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Abstract

Real-Time Maude is a language and tool supporting the formal specification and analysis of real-
time and hybrid systems. The specification formalism is based on rewriting logic, emphasizes
generality and ease of specification, and is particularly suitable to specify object-oriented real-
time systems. The tool offers a wide range of analysis techniques, including timed rewriting for
simulation purposes, untimed and time-bounded search for states that are reachable from the initial
state and match a given search pattern, and time-bounded linear temporal logic model checking.
It has been used to model and analyze sophisticated communication protocols, and state-of-the-art
wireless sensor network and scheduling algorithms. Real-Time Maude is an extension of Maude.

This document describes the version 2.3 of the language and tool Real-Time Maude. Papers
describing the versions 2 of the tool include [32, 33, 35]. The references [29, 30, 37] describe the
obsolete prototype version 1 of Real-Time Maude.
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Chapter 1

Introduction

Real-Time Maude is a language and tool for the high-level formal specification, simulation, and
formal analysis of real-time and hybrid systems. Real-Time Maude emphasizes ease and generality
of specification, including support for real-time object-based systems that can be distributed, and
where the number of objects and messages can change dynamically.

The price to pay for the expressiveness of the Real-Time Maude specification formalism is that
many system properties in general are undecidable. This does not in any way diminish the need
for analyzing such specifications, e.g., by using decision procedures when applicable and by using
semi-decidable methods which can sometimes uncover subtle mistakes in a specification. Real-Time
Maude specifications are executable, so that a first form of formal analysis consists in simulating
the progress in time of the system by timed rewriting. This can be very useful for debugging
the specification; but of course, any such execution gives us only one behavior among the many
possible concurrent behaviors of the systems. To gain further assurance about a system design one
can use model checking techniques that explore many different behaviors from a given initial state
of the system. Timed search and time-bounded linear temporal logic model checking can analyze
all behaviors—relative to a given treatment of dense time as explained below—from a given initial
state up to a certain duration. By restricting search and model checking to behaviors up to a
given duration, the set of reachable states is restricted to a finite set, which can be subjected to
model checking. For further analysis, the reflective nature of Real-Time Maude’s logic and its
implementation allows the user to define his/her own analysis strategies.

The time domain may be discrete or dense. While, e.g., timed automata “discretize” dense time by
defining “clock regions” so that all states in the same clock region satisfy the same properties [2],
this technique in general cannot be employed in the more complex systems expressible in Real-Time
Maude. Real-Time Maude deals with dense time by offering a choice of different “time sampling”
techniques, so that instead of covering the whole time domain, only some moments in time are
visited. For example, one time sampling strategy offers the choice of visiting at user-specified time
intervals; another strategy, the maximal time sampling strategy, allows time to advance “as much as
possible” before something “interesting” happens. Real-Time Maude’s search and model checking
capabilities analyze all behaviors up to the given strategy for advancing time.

Search and model checking are in general “incomplete” for dense time, since there is no guarantee
that the sampling strategy covers all interesting behaviors. However, in [34] we have given general
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criteria ensuring that maximal time sampling analyses are indeed complete. As a special case, we
have shown how these criteria specialize to a set of natural and easy-to-check criteria for object-
oriented systems. Many large object-oriented systems—way beyond the class of systems that
can be modeled by, say, timed automata [2]—satisfy these criteria, including systems where each
instantaneous transition is triggered by the expiration of a timer or by the reception of a message
with a fixed transmission delay. Examples of systems in this category includes the large AER/NCA
multicast protocol and the OGDC wireless sensor network algorithm discussed below. Most of the
large systems we have modeled in Real-Time Maude so far have had a discrete time domain,
and in this case search and model checking completely cover all behaviors from the initial state.
Nevertheless, even in these cases, our completeness results justify using the maximal time sampling
strategy instead of exhaustively visiting each time instant [34].

Real-Time Maude complements existing tools such as Kronos [40], Uppaal [3, 18], and HyTech [15],
which are model checking tool based on timed [2] and rectangular hybrid automata [1], that have
been used to model and analyze an impressive collection of real-time and hybrid systems. These
tools restrict their specification formalism to fairly limited decidable fragments of rectangular finite-
control hybrid automata for which there exist analysis algorithms1. However, many interesting sys-
tems cannot be naturally specified in the fairly limited formalism of finite-control hybrid automata.
There is a trade-off between restricting the specification language so that one can be guaranteed
to be in a decidable fragment, and of supporting well the specification of “infinite-state” systems
with different communication and interaction models and with advanced object-oriented and mod-
ularity features. Real-Time Maude complements the above mentioned tools by providing a much
more general specification formalism, at the cost of decidability of many system properties.

Some “formal” tools geared toward modeling and analyzing larger real-time systems, such as,
e.g., IF [4], extend timed automata techniques with explicit constructions for modeling objects,
communication, and, say, some notion of data types. Real-Time Maude complements such tools
not only by the full generality of the specification language, but, most importantly, by its simplicity
and clarity: A simple and intuitive formalism is used to specify both the data types (by equations)
and dynamic and real-time behavior of the system (by rewrite rules); and the semantics of a
Real-Time Maude specification is clear and easy to understand.

On the other side of the spectrum, Real-Time Maude provides an alternative to informal specifica-
tions and their testing on typical simulation tools and testbeds by

• providing a precise formal specification of the system which, being executable, can be tested
directly;

• allowing the specification to be analyzed in many different ways, not just by simulating a few
behaviors of the system, but by exploring a wide range of different scenarios; and

• allowing the user to define the appropriate form of communication at a high level of abstraction
instead of having to use a fixed set of communication primitives.

One reason for the ease of specification in Real-Time Maude is the flexibility and generality of its
underlying rewriting logic formalism [22], and of the specialization of rewriting logic to real-time

1In some cases, the specifications may go slightly beyond the decidable fragments of rectangular hybrid automata
in which case the analysis is not guaranteed to terminate.
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rewrite theories [31], which support the specification of a wide range of real-time models, and allow
a choice between discrete and continuous time domains.

Real-Time Maude is implemented in Maude [7, 6] as an extension of Full Maude [8]. The current
version is a complete redesign of a prototype developed in 2000 [29, 37, 30] and emphasizes new
analysis techniques, user-friendliness, and performance. The tool’s functionality has been designed
to exploit as much as possible the high performance of the underlying Maude engine. Real-Time
Maude executes most commands by translating the Real-Time Maude specification and the Real-
Time Maude into a Maude specification and a Maude command which is then executed using
Maude [35]. The Real-Time Maude tool—together with this manual, related papers, and executable
example specifications—is available free of charge at http://www.ifi.uio.no/RealTimeMaude.

1.1 What Real-Time Maude is not

• Real-Time Maude is not first and foremost a verification tool. Real-Time Maude specifica-
tions are well-defined mathematical objects [31] and as such can be subjected to mathematical
analysis. However, as many properties about real-time rewrite theories in general are unde-
cidable, the model checker may not terminate or may not be “complete” for dense time, since
the analysis is performed w.r.t. the chosen time sampling strategy for dealing with dense time,
which may not always cover all “essential” behaviors. Although, as just mentioned, we have
identified classes of specifications for which the abstraction provided by the tool’s strategies
for dealing with time increase indeed covers all interesting behaviors.

The tool should not be primarily be seen as a verification tool. It should primarily be used
to model and analyze complex systems which cannot be naturally expressed as, e.g., finite
timed or hybrid automata. After Real-Time Maude testing and analysis have uncovered
many design errors, the model, or critical parts of it, can be formally verified e.g. using some
(interactive) theorem prover for real-time systems such as STeP [39].

• The tool is not a mathematical constraint solver and does not currently contain any sophisti-
cated libraries for solving, e.g., differential equations. The user is of course free to define the
functions needed to model the continuous dynamics of a hybrid system in our tool.

• The tool is suitable for writing and analyzing executable specifications (or models) of real-time
systems, and cannot—at the moment—be used for implementing actual real-time systems.

1.2 Use of Real-Time Maude

Real-Time Maude has been used in large case studies, including the specification and analysis of:

1. The sophisticated AER/NCA suite of protocols for reliable and adaptive multicast in active
networks [16], where formal analysis uncovered subtle design errors which could not be found
by traditional testing, while independently finding all bugs discovered by testing [27, 28].

2. An extension of the CASH scheduling algorithm [5], which uses a queue of unused execution
budgets that can be reused on other jobs. Real-Time Maude simulations showed that the size
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of the queue can grow beyond any bound, which implies that the CASH algorithm cannot
be modeled using only finitary data structures, and, therefore, cannot be modeled by timed
automata. Reachability analysis (search) showed that schedulability cannot be guaranteed. In
addition, our “Monte Carlo” simulations of CASH indicated that it would be highly unlikely
that the error would be found during simulations [25, 24].

3. The state-of-the-art OGDC coverage algorithm for wireless sensor networks [36]. Advanced
wireless sensor network algorithms pose many challenges to their formal modeling and anal-
ysis, including modeling novel forms of communication and spatial entities, and analyzing
both correctness and, in particular, performance. We have been able to measure all the per-
formance metrics during simulation that the developers of OGDC performed using a wireless
sensor network simulator. Furthermore, since we modeled also message delays, we found some
differences w.r.t. the performance measures, and could suggest some (minor) improvements
to OGDC. To the best of my knowledge, our work on OGDC represents the first formal
modeling and analysis of advanced wireless sensor network algorithms. Initial efforts at using
Real-Time Maude to wireless sensor networks have since taken place elsewhere [17, 38].

Other tool applications include analyzing time-sensitive cryptographic protocols [26, 14] and parts
of a reliable multicast protocol being developed by the Internet Engineering Task Force [19], and
developing an execution environment for a real-time extension of the Actor model [9].

1.3 Manual Overview

Real-Time Maude extends the Maude and Full Maude languages and tools which are well doc-
umented elsewhere, for example in the Maude user manual [8]. The present manual focuses on
the Real-Time Maude-specific specification features and execution commands and assumes a basic
knowledge of Maude. The manual describes the tool in an informal style. The paper [31] describes
the theoretical foundations of the model. The paper [35] describes Real-Time Maude and spells out
the precise semantics of the tool’s commands. The paper [32] gives a 5-page high-level introduction
to version 2.0 of our tool.

Chapter 2 explains how to specify real-time and hybrid system as timed modules in Real-Time
Maude. The techniques are exemplified by a series of simple “clock” examples, as well as by
a series of object-oriented specifications of overly simplistic protocols for determining round trip
times in networks. Chapter 3 explains how to download and use the tool, and how to execute and
analyze timed modules in various ways. The analysis techniques are exemplified by analyzing the
example specifications from Chapter 2. The appendices list some important predefined modules
and briefly recapitulate the tool’s commands.

1.3.1 Changes from Version 2.2 to Version 2.3

The present version of Real-Time Maude essentially updates Real-Time Maude to run on top of
versions 2.3 of Maude and Full Maude. From a user’s perspective, the changes from version 2.2
are minimal, so that all 2.2 modules and analysis commands should work also in version 2.3. Since
the implementation of Real-Time Maude extends the extension of Full Maude, our tool does not
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yet support bounds on the number of rewrite steps in search commands; neither does it provide a
command for exhibiting the sequence of rewrite steps leading to a state found during a search (i.e.,
the ‘show path’ command in core Maude).

1.3.2 Changes from Version 2.1 to Version 2.2

The changes from version 2.1 to version 2.2 are:

• Since Maude 2.2 includes the built-in functions min and max on the natural and ratio-
nal numbers, these functions are now called minimum and maximum in the automatically
imported “skeleton” module TIME. Nevertheless, the functions max and min can be used
in any module importing the predefined modules NAT-TIME-DOMAIN, POSRAT-TIME-DOMAIN,
NAT-TIME-DOMAIN-WITH-INF, and POSRAT-TIME-DOMAIN-WITH-INF.

• Maude 2.2 has a built-in sort PosRat for the (non-zero) positive rational numbers. In the pre-
defined Real-Time Maude modules POSRAT-TIME-DOMAIN and POSRAT-TIME-DOMAIN-WITH-INF,
the sort for nonnegative rational numbers is now called NNegRat (instead of PosRat as in
version 2.1), while PosRat now denotes what was in version 2.1 called NzPosRat. If your
Real-Time Maude 2.1 modules used the sorts Time and NzTime, you should be fine.

• The operator _+_ is extended to the infinity value INF in the modules NAT-TIME-DOMAIN-WITH-INF
and POSRAT-TIME-DOMAIN-WITH-INF.

• In searches in Real-Time Maude 2.1 (and in Full Maude 2.2), a search for a pattern including
an object pattern of class C will not “match” any object belonging to a proper subclass of C.
Furthermore, in Real-Time Maude 2.1 and Full Maude 2.2 searches, all attributes in an object
must be captured in an object pattern (usually by adding a variable of sort AttributeSet).
These “limitations” do not apply to version 2.2 of Real-Time Maude (see Section 3.6.4 for
details).

In addition, Real-Time Maude does not inherit a Full Maude flaw involving objects with no at-
tributes.
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Chapter 2

Specifying Real-Time and Hybrid

Systems in Real-Time Maude

This chapter shows how to specify real-time and hybrid systems as timed modules in Real-Time
Maude. We illustrate these techniques with some very simple examples, namely, by a series of
specifications of a clock which may stop at any time due to battery failure and by a specification
of a simple thermostat system.

Real-Time Maude is particularly suitable for specifying distributed object-oriented real-time sys-
tems. We illustrate object-oriented specification in Real-Time Maude with a series of specifications
of protocols used to determine the round trip times of message transmission between nodes in a
network. To keep the exposition short, we have overly simplified the modeling of the transmission
medium, so that a message may take any time to travel between two nodes in the network. A
realistic and detailed model of communication in which link speed, propagation and transmission
delays, congestion, etc., are taken into account can be found in the Real-Time Maude model of the
AER/NCA protocol suite [28] which is available on the tool’s web page. The first component of
that protocol suite is a protocol which determines the round trip time between nodes in an active
network.

Since the tool extends the rewriting logic languages Maude and Full Maude [6, 8], we start this
section by briefly recalling specification in Maude and Full Maude.

2.1 Specification in Maude and Full Maude

2.1.1 Maude

Maude is a language and tool which focuses on simplicity, expressiveness, and performance [7, 8].
The tool, together with a manual and a collection of papers and examples, can be downloaded free
of charge from http://maude.cs.uiuc.edu.

The Maude specification formalism is based on first-order equational and rewriting logic specifi-
cation techniques. Data types are defined by algebraic equational specifications in membership
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equational logic [23], which contains order-sorted equational logic [13] as a sublogic. The possibly
concurrent dynamic behavior of a system is specified by (possibly conditional) rewrite rules which
specify the atomic transitions of the system.

In Maude, a functional module is declared with keywords fmod – endfm and contains a set of
declarations, which may be

• importations of previously defined modules (protecting . . . , extending . . . , or including

. . . )

• declarations of sorts (sort s . or sorts s s ′ .)

• subsort declarations (subsort s < s ′ .)

• declarations of function symbols (op f : s1 . . . sn -> s .)

• declarations of variables (vars v v ′ : s .)

• unconditional equations (eq t = t ′ .)

• conditional equations (ceq t = t ′ if cond .), and

• membership axioms ( mb t : s . or cmb t : s if cond .)

System modules are declared with the keywords mod – endm and may also contain rewrite rules of
the form rl t => u . or crl t => u if cond ., where cond is a conjunction of boolean expressions,
equality tests, membership tests, and (in the case of rewrite rules) rewrite tests. A rewrite rule is
usually equipped with a rule label, and should be given the attribute nonexec if it is not executable
(see [8]).

Function symbols can be declared to have mixfix form by using underscores such as in

op _+_ : Nat Nat -> Nat .

op if_then_else_fi : Bool Nat Nat -> Nat .

so that terms can be written 5 + 2 and if N > M then N else M fi. Binary function symbols
may have attributes such as assoc, comm, and/or id:, so that rewriting is performed modulo asso-
ciativity, commutativity, and/or identity for that function symbol. Multiset rewriting is rewriting
modulo associativity and commutativity of a multiset union operator. The ctor attribute de-
notes that the function symbol is intended to be a constructor which typically does not have a
computational meaning and is used to build data elements.

A single line comment is started by either *** or ---. A multi-line comment is started by ***( or
---( and is ended by a matching occurrence of ).
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Execution of Maude Specifications

The built-in Maude commands for executing and analyzing Maude specifications are

• equational simplification (red ...), in which a term is reduced to its normal form w.r.t. to the
equations in the specification;

• rewriting (rew ... or frew ... for “fair” rewriting), in which one of the possibly many different
rewrite sequences from an initial state is explored;

• search (search ...), in which all possible rewrite sequences from an initial state are explored
in searching for states matching a given search pattern; and

• linear temporal logic model checking for systems in which a finite set of states are reachable
from the given initial state.

In addition to these commands, a user may write her own execution strategies using the reflective
capabilities of Maude. Maude has also facilities for formatting output, tracing parts of the exe-
cution, debugging, and so on. Finally, Maude has “system” commands such as ‘q’ (or ‘quit’) for
ending a Maude session, ‘in filename’ and ‘load filename’ for reading in a file. The command ‘eof’
marks the “end of file”.

Maude is a high-performance rewrite interpreter which can execute millions of rewrites per sec-
ond. New algorithms for associate-commutative matching make rewriting modulo associativity and
associativity-commutativity very efficient for most patterns encountered in practice. The model
checker is comparable in performance to state-of-the-art model checkers such as SPIN [11].

2.1.2 Concurrent Objects in Full Maude

Object-based distributed systems can be naturally modeled in Maude as multisets of objects and
messages traveling between objects. Full Maude [8, 10] is an extension of Maude which provides
convenient syntactic support for object-oriented specification. Many of the larger Maude applica-
tions are object-oriented specifications.

In object-oriented (Full) Maude modules one can declare classes and subclasses. A class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C to have a multiset of attributes (with identifiers) att1 to attn and values of sorts
s1 to sn . An object of class C in a state is represented as a term <O : C | att1 : val1, ..., attn : valn >,
where O is the object’s name or identifier, and where val1 to valn are the current values of the
attributes att1 to attn . Objects can interact with each other in a variety of ways, including the
sending of messages. A message is a term of sort Msg. In a concurrent object-oriented system, the
state, which is usually called a configuration of sort Configuration, has typically the structure
of a multiset made up of objects and messages. Multiset union for configurations is denoted by a
juxtaposition operator (empty syntax) that is declared associative and commutative so that order
and parentheses do not matter, and so that rewriting is multiset rewriting supported directly in
Maude:
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sorts Object Msg Configuration .

subsort Object Msg < Configuration .

op none : -> Configuration [ctor] .

op __ : Configuration Configuration -> Configuration

[ctor config assoc comm id: none] .

The dynamic behavior of concurrent object systems is axiomatized by specifying each of its con-
current transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : y, a3 : z > =>

< O : C | a1 : x + w, a2 : y, a3 : z > m’(y,x)

defines a (family of) transition(s) in which a message m having address argument O and an extra
argument w is consumed by an object O of class C, with the effect of altering the attribute a1 of
the object and of generating a new message m’(y,x). By convention, attributes, such as a3 in our
example, whose values do not change and do not affect the next state of other attributes need not
be mentioned in a rule. Attributes like a2 whose values influence the next state of other attributes
or the values in messages, but are themselves unchanged, may be omitted from right-hand sides of
rules. The above rule could thus be written

rl [l] : m(O,w) < O : C | a1 : x, a2 : y > =>

< O : C | a1 : x + w > m’(y,x) .

Maude supports multiple inheritance by allowing subclass declarations of the form

subclass C < C1 ...Cn .

which defines the class C to be a subclass of the classes C1 to Cn ; that is, the class C inherits all
attributes of its superclasses C1 to Cn , as well as their rewrite rule transitions.

Full Maude also provides a rich module algebra supporting parameterized modules. Full Maude
is written in Maude and is started by executing the file full-maude.maude which comes with the
Maude distribution. All input to Full Maude (both module definitions and commands) should be
enclosed by a pair of parentheses.

Applications of Maude

Among its many applications, Maude has proved particularly suitable to the modeling and analysis
of networks protocols, and to meta-tool applications in which Maude is used to implement other
languages. Real-Time Maude is one example of such use of Maude. For an extensive bibliography
of applications of rewriting logic in Maude and other systems see [21].
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2.2 Real-Time Maude Specifications

In [31] we suggested to model real-time and hybrid systems as real-time rewrite theories. A real-time
rewrite theory is a rewrite theory containing1:

• A specification of a data sort Time specifying the time domain, which may be discrete or
dense. The sort Time should satisfy the axioms of the theory TIME [31] which defines time
abstractly as an ordered commutative monoid (Time, 0,+, <) with additional operators such
as “monus” (defined by x monus y = if x > y then x − y else 0), ≤, etc.

• A designated sort GlobalSystem with no subsorts or supersorts, and a free constructor

{_} : System → GlobalSystem

(for System the sort of the state of the system) with the intended meaning that {t} denotes the
whole system in state t . The specification should contain no non-trivial equations involving
terms of sort GlobalSystem, and the sort GlobalSystem should not appear in the arity of
any other function symbol in the specification.

• Instantaneous rewrite rules, which are “ordinary” rewrite rules that model instantaneous
change and are assumed to take zero time.

• Tick (rewrite) rules, that model elapse of time in a system. Tick rules have the form

l : {t}
τl−→ {t ′} if cond ,

where τl is a term (possibly containing variables) of sort Time denoting the duration of the
tick rule.

The tick rules advance time in the system. The global state of the system should always have the
form {t}, in which case the form of the tick rules ensure that time advances uniformly in all parts
of the system.

2.2.1 Timed Modules

Real-time rewrite theories are specified in Real-Time Maude as timed modules or object-oriented
timed modules at the user level by enclosing the module body between the keywords tmod and
endtm, or between tomod and endtom for object-oriented timed modules. (To state nonexecutable
properties, Real-Time Maude allows the user to specify real-time extensions of abstract Full Maude
theories and object-oriented theories by using, respectively, the keywords tth and endtth, and
toth and endtoth.)

Any timed module and timed theory automatically imports the functional module TIMED-PRELUDE

(given in Appendix A) which includes the crucial declarations

1See [31] for the complete and formal definition of real-time rewrite theories and their model theory.

13



sorts System GlobalSystem .

op {_} : System -> GlobalSystem [ctor] .

The “state” of a system should be represented by a term of sort System. A timed module also
imports a skeleton of a time domain which is described next.

2.2.2 Time Domains

The equational theory morphism φ from the theory TIME to the chosen time domain is not given
explicitly at the specification level. Instead, by default, any timed module automatically imports
the following module TIME:

fmod TIME is

sorts Time NzTime .

subsort NzTime < Time .

op zero : -> Time .

op _plus_ : Time Time -> Time [assoc comm prec 33 gather (E e)] .

op _monus_ : Time Time -> Time [prec 33 gather (E e)] .

ops _le_ _lt_ _ge_ _gt_ : Time Time -> Bool [prec 37] .

eq zero plus R:Time = R:Time .

eq R:Time le R’:Time = (R:Time lt R’:Time) or (R:Time == R’:Time) .

eq R:Time ge R’:Time = R’:Time le R:Time .

eq R:Time gt R’:Time = R’:Time lt R:Time .

endfm

This module defines a “skeleton” of a time domain, with a zero value and some function symbols.
The morphism φ then implicitly maps Time to Time, 0 to zero, + to _plus_, ≤ to _le_,
etc. Even though Real-Time Maude assumes a fixed syntax for time operations, the tool does not
build in a fixed model of time. In fact, the user has complete freedom to specify the data type of
time values—which can be either discrete or dense—by:

1. importing a specific data type of time values satisfying the TIME theory, with a sort, say
TimeValues for such values, and

2. declaring a subsort inclusion TimeValues < Time and giving appropriate equations interpret-
ing the constant zero and the operators plus , monus , and lt in TimeValues.

In the following section we show how one can define the time domain to be the natural numbers or
the positive rational numbers.
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Built-in Time Domain Modules

It is quite often useful to extend the time domain with an infinity value INF. Real-Time Maude
contains the following extension of the time domain “skeleton” with such an infinity value:

fmod TIME-INF is

including TIME .

sort TimeInf .

subsort Time < TimeInf .

op INF : -> TimeInf .

op _plus_ : TimeInf TimeInf -> TimeInf [ditto] .

op _monus_ : TimeInf Time -> TimeInf [ditto] .

ops _le_ _lt_ _ge_ _gt_ : TimeInf TimeInf -> Bool [prec 37] .

var TI TI’ : TimeInf . var R : Time .

eq INF plus TI = INF .

eq INF monus R = INF .

eq TI le INF = true .

eq INF le R = false .

eq INF lt TI = false .

eq R lt INF = true .

eq TI gt TI’ = TI’ lt TI .

eq TI ge TI’ = TI’ le TI .

endfm

The tool will treat the value INF as an infinity value.

Likewise, the tool contains the following built-in module for defining functions minimum and maximum

in linear time domains:2

fmod LTIME is

including TIME .

ops minimum maximum : Time Time -> Time [assoc comm] .

vars R R’ : Time .

ceq maximum(R, R’) = R if R’ le R .

ceq minimum(R, R’) = R’ if R’ le R .

endfm

The following module defines a skeleton time domain with an infinity value and the functions min
and max in linear time domains:

2The built-in Maude modules NAT and RAT contains operations max and min, and can therefore be used in any
Real-Time Maude module that imports any of these modules.
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fmod LTIME-INF is

including LTIME .

including TIME-INF .

ops minimum maximum : TimeInf TimeInf -> TimeInf [ditto] .

eq maximum(INF, TI:TimeInf) = INF .

eq minimum(INF, TI:TimeInf) = TI:TimeInf .

endfm

Real-Time Maude contains the following built-in module which defines the time domain to be the
natural numbers:

fmod NAT-TIME-DOMAIN is

including LTIME .

protecting NAT .

subsort Nat < Time .

subsort NzNat < NzTime .

vars N N’ : Nat .

eq zero = 0 .

eq N plus N’ = N + N’ .

eq N monus N’ = if N > N’ then sd(N, N’) else 0 fi .

eq N lt N’ = N < N’ .

endfm

It is often practical to add the infinity value to the natural numbers time domain. The follow-
ing Real-Time Maude modules does exactly that, and extends the comparison operators and the
functions min and max in NAT to TimeInf:

fmod NAT-TIME-DOMAIN-WITH-INF is

protecting NAT-TIME-DOMAIN .

including LTIME-INF .

--- should for simplicity extend <, >=, etc to infinity:

op _<_ : TimeInf TimeInf -> Bool [ditto] .

op _<=_ : TimeInf TimeInf -> Bool [ditto] .

op _>_ : TimeInf TimeInf -> Bool [ditto] .

op _>=_ : TimeInf TimeInf -> Bool [ditto] .

op _+_ : TimeInf TimeInf -> TimeInf [ditto] .
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var N : Nat . var TI : TimeInf .

eq INF < TI = false .

eq N < INF = true .

eq TI <= INF = true .

eq INF <= N = false .

eq INF >= TI = true .

eq N >= INF = false .

eq TI > INF = false .

eq INF > N = true .

eq INF + TI = INF .

--- extend the built-in ’min’ and ’max’ to TimeInf:

ops min max : TimeInf TimeInf -> TimeInf [ditto] .

eq max(INF, TI:TimeInf) = INF .

eq min(INF, TI:TimeInf) = TI:TimeInf .

endfm

To specify dense time domains, Real-Time Maude defines a subsort NNegRat of nonnegative rational
numbers, and, in the module POSRAT-TIME-DOMAIN, defines the time domain to be the rational
numbers:

fmod POSITIVE-RAT is

protecting RAT .

sort NNegRat .

subsorts Zero PosRat Nat < NNegRat < Rat .

endfm

fmod POSRAT-TIME-DOMAIN is

including LTIME .

protecting POSITIVE-RAT .

subsort NNegRat < Time .

subsort PosRat < NzTime .

vars R R’ : NNegRat .

eq zero = 0 .

eq R plus R’ = R + R’ .

eq R monus R’ = if R > R’ then R - R’ else 0 fi .

eq R lt R’ = R < R’ .

endfm

17



The module POSRAT-TIME-DOMAIN-WITH-INF extends this time domain with the infinity value.

To summarize, to specify the time domain, the user can:

• either leave the time domain “unspecified” for later instantiations, or

• import either of the built-in modules NAT-TIME-DOMAIN or POSRAT-TIME-DOMAIN (or their
-WITH-INF versions), or

• define her own time explicitly in a way exemplified by the module NAT-TIME-DOMAIN.

2.2.3 Tick Rules

A tick rule
l : {t}

τ

−→ {t ′} if cond

is written with syntax

crl [l] : {t} => {t ′} in time τ if cond .

The syntax for unconditional tick rules is

rl [l] : {t} => {t ′} in time τ .

Remembering that any timed module automatically imports the sorts System and GlobalSystem

and the operator {_} as well as a skeleton time domain, we are now ready to specify some timed
modules.

2.2.4 Examples of Timed Modules: Modeling a Clock

In a series of examples we will specify a simple “clock” which shows the “time.” A term clock(58)

denotes a clock which shows time 58. The following module specifies a discrete clock where the
time always advances by one time unit in each “tick” step. Since we have discrete time we use the
natural numbers as the time domain and import the built-in module NAT-TIME-DOMAIN:

(tmod DISCRETE-CLOCK-1 is protecting NAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

var N : Time .

rl [tick] : {clock(N)} => {clock(N + 1)} in time 1 . --- Tick one time unit

endtm)

The system advances time by 1 in each step, with the result that the clock value increases by 1.

We all know that a battery-powered clock may stop due to a flat battery or other failures. The next
module models a clock which may stop at any time, in which case the state is stopped-clock(r),
where r was the clock value when the clock stopped. A discrete clock which may stop may be
modeled by the following timed module:
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(tmod DISCRETE-BROKEN-CLOCK-1 is including DISCRETE-CLOCK-1 .

op stopped-clock : Time -> System [ctor] .

var N : Time .

rl [batteryDies] : clock(N) => stopped-clock(N) . --- Battery may suddenly die

--- Of course, time may elapse even after the clock has stopped:

rl [tickWhenFlat] : {stopped-clock(N)} => {stopped-clock(N)} in time 1 .

endtm)

Time may well elapse even when the clock has stopped, although, as we all know, time elapse does
not change the state of a stopped clock.

These clocks are not terribly exciting. Assume therefore that clocks count hours, so that when the
clock reaches 24 it should instead show 0. This setting can be modeled in slightly different different
ways. The following specification just increases the clock value modulo 24:3

(tmod DISCRETE-CLOCK-24-2 is protecting NAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

var N : Time .

rl [tick] : {clock(N)} => {clock((N + 1) rem 24)} in time 1 .

endtm)

To get a slightly more interesting (and slightly different) specification, the following module has a
reset operation which resets a (“retrograde”) clock with value 24 to 0:

(tmod DISCRETE-CLOCK-24 is protecting NAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

var N : Time .

crl [tick] : {clock(N)} => {clock(N + 1)} in time 1 if N < 24 .

rl [reset] : clock(24) => clock(0) .

endtm)

The state {clock(24)} goes to state {clock(0)} using an instantaneous transition. The condition
on the tick rule ensures that time cannot elapse when the clock shows 24, so that {clock(24)}

must be reset to {clock(0)} before time advances further.

While discrete time is appropriate for modeling real-time systems such as real-time scheduling
algorithms and communication protocols, hybrid systems are often naturally modeled using a dense
time domain. The following specification models our clock using a dense time domain, namely the
nonnegative rational numbers:

(tmod DENSE-CLOCK-1 is protecting POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System [ctor] .

vars R R’ : Time .

3As the observant reader notices, the following two modules again model unfailing clocks.
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crl [tick] :

{clock(R)} => {clock(R + R’)} in time R’ if R’ <= 24 monus R [nonexec] .

rl [reset] : clock(24) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

rl [tickWhenFlat] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec] .

endtm)

Although the example is fairly simple, the tick rules above are typical for systems with dense time
domain. From a given state, time can elapse by any time value until the (active) clock reaches the
value 24. This nondeterministic time increase is modeled in the tick rules by the duration term
being a new variable R’ which does not occur in the left-hand side of the rule, and which is not
instantiated in the condition of the rule. This variable R’ can then assume any value between 0 and
24 - R. The nondeterministic choice of R’ in the above tick rules and the associated [nonexec]

attribute are further explained in Section 2.2.5 below.

2.2.5 Admissible Tick Rules

Any tick rule should, strictly speaking, be able to advance time by any amount of time, or at least
by any amount of time less than (or equal) to a certain maximum time increase. A model in which
time can advance by two time units from a state {t} but cannot advance by one time unit from
the same state does not make much sense. Tick rules should therefore normally have either of the
forms

crl [l] : {t} => {t ′} in time R if R le u /\ cond [nonexec] .

or

crl [l] : {t} => {t ′} in time R if R lt u /\ cond [nonexec] .

or just

crl [l] : {t} => {t ′} in time R if cond [nonexec] .

where R is a new variable which does not occur in t and which is not initialized in cond . The
additional conditions cond may be empty. The term u denotes the maximum time by which time
can elapse from state {t} in “one” tick step. Usually, this means that some action must be taken,
such as resetting a clock in our example, before time can advance again.

For convenient notation, the tool can also handle the above rules with le and lt replaced

by <= and <, as in our example above, in which case Real-Time Maude assumes that lt and <

coincide on the time domain.

The time advance in the above tick rules is nondeterministic and we call such tick rules time-
nondeterministic. Real-Time Maude is equipped with a range of built-in strategies to handle
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time-nondeterministic tick rules of the above forms (see Section 3.3). Nevertheless, since such rules
are not directly executable they should be equipped with the nonexec attribute.

Time-deterministic tick rules can naturally be used when the time domain is discrete, such as in
the discrete clocks above where time is advanced by 1 in each tick rule application.

2.2.6 More Clock Examples

Many Clocks

Yet another variation of the clock setting is a system with many clocks. We let an associative and
commutative operator __ be the constructor for multisets of single clocks, and obtain the following
specification:

(tmod MANY-DENSE-CLOCKS is protecting POSRAT-TIME-DOMAIN-WITH-INF .

--- The sort System is now a multiset of clocks:

sort Clock .

ops clock stopped-clock : Time -> Clock [ctor] .

subsort Clock < System .

op __ : System System -> System [ctor assoc comm] .

vars R R’ : Time .

vars SYSTEM SYSTEM’ : System .

--- The instantaneous transitions:

rl [reset] : clock(24) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

--- Tick the whole system:

crl [tick] :

{SYSTEM} => {delta(SYSTEM, R)} in time R if R <= mte(SYSTEM) [nonexec] .

--- Effect of time elapse on a system:

op delta : System Time -> System [frozen (1)] .

eq delta(clock(R), R’) = clock(R plus R’) .

eq delta(stopped-clock(R), R’) = stopped-clock(R) .

eq delta(SYSTEM SYSTEM’, R) = delta(SYSTEM, R) delta(SYSTEM’, R) .

--- Maximum Time Elapse allowed in a system before a clock must be reset:

op mte : System -> TimeInf [frozen (1)] .

eq mte(clock(R)) = 24 monus R .

eq mte(stopped-clock(R)) = INF .

eq mte(SYSTEM SYSTEM’) = min(mte(SYSTEM), mte(SYSTEM’)) .

endtm)
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The state of the system is now a multiset of clocks. The function mte computes the maximal
t ime elapse of a system, which equals the time until the next moment in time when a clock must
be reset. The function delta models the effect of time elapse on a system. To avoid “aged”
rewrites (as explained in [31]), in which a rewrite takes place at the “wrong time”, the function
delta is declared to be frozen. This excludes ill-timed rewrites such as delta(clock(12), 11)

−→ delta(stopped-clock(12), 11) = stopped-clock(12) in which time advanced an active
clock in state clock(12) by 11 time units and still the result was stopped-clock(12). Like-
wise, the function mte is declared to be frozen to avoid rewrites in the time domain, since if mte
were not declared frozen, there could be rewrites such as 2 −→ INF, because clock(22) −→
stopped-clock(22), and applying the congruence rule of rewriting logic to this rewrite w.r.t. mte
would give mte(clock(22)) −→ mte(stopped-clock(22)), which is the same as 2 −→ INF.

An Awkward Clock

An awkward version of a clock is a discrete clock working in a dense time domain:

(tmod DISCRETE-DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .

op clock : Nat -> System .

var N : Nat . var R : Time .

rl [tick] : {clock(N)} => {clock(N + floor(R))} in time R [nonexec] .

endtm)

This clock is slightly unpleasant since it is not invariant under “time stuttering” in the sense that
a system {clock(0)} can tick for 1 time unit to reach state {clock(1)}, but it may also tick first
1/2 time units, remaining in state {clock(0)}, and then tick 1/2 time units again. Although the
total time elapse is now 1, the system remains in state {clock(0)}.

Parametric Time Domains

Finally, we specify a simple form of parametricity in the time domain. The specification

(tmod GENERIC-CLOCK is

op clock : Time -> System [ctor] .

vars R R’ : Time .

rl [tick] : {clock(R)} => {clock(R plus R’)} in time R’ [nonexec] .

endtm)

only contains the default “skeleton” of the time domain, and can be further extended to a discrete
clock as follows:

(tmod DISCRETE-CLOCK is

protecting NAT-TIME-DOMAIN .

including GENERIC-CLOCK .

endtm)
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Figure 2.1: A hybrid automaton model of a thermostat.

or it can be extended to a dense clock:

(tmod DENSE-CLOCK is

protecting POSRAT-TIME-DOMAIN .

including GENERIC-CLOCK .

endtm)

2.2.7 A Hybrid System Example: A Thermostat

A simplified model of a thermostat works by turning on and off a heater in order to maintain a
temperature between 62 and 74 degrees. When the heater is turned off, the temperature decreases
by one degree per time unit, and when the heater is turned on the temperature increases by two
degrees per time unit. Fig. 2.1 describes such a thermostat as a hybrid automaton where x denotes
the temperature.

Assuming that the time and temperature domains can be modeled by the nonnegative rational
numbers, a Real-Time Maude specification of the thermostat can be given as follows, where l,x
denotes the state of the system, with x the current temperature and l the current control state
(either on of off):

(tmod THERMOSTAT is

protecting POSRAT-TIME-DOMAIN . --- Dense time domain

sort ThermoState .

ops on off : -> ThermoState [ctor] .

op _‘,_ : ThermoState NNegRat -> System [ctor] .

rl [turn-on] : off , 62 => on , 62 .

rl [turn-off] : on , 74 => off , 74 .

vars R R’ : Time .

crl [tick-on] :

{on, R} => {on, R + (2 * R’)} in time R’ if R’ <= ((74 - R) / 2) [nonexec] .
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crl [tick-off] :

{off, R} => {off, R - R’} in time R’ if R’ <= (R - 62) [nonexec] .

endtm)

2.3 Timed Object-Oriented Modules

Timed object-oriented modules, enclosed by the keywords tomod and endtom, extend both Full
Maude’s object-oriented modules and timed modules to support object-oriented specification of
real-time systems. In contrast to most untimed systems, functions such as mte (which gives the
maximum time elapse possible until some action must be taken) as well as the tick rules will
observe the global configuration. It is therefore useful to have a richer sort structure for configura-
tions, and timed object-oriented modules include the sorts EmptyConfiguration (for empty con-
figurations), NEConfiguration (for nonempty configurations), MsgConfiguration (for configura-
tions which consist of only messages), NEMsgConfiguration (for nonempty message configurations)
ObjectConfiguration (for configurations which contain only objects), and NEObjectConfiguration

(for nonempty object configurations) in addition to the usual sorts Object, Msg, and Configuration

(see Appendix A.3). The subsort declaration

subsort Configuration < System .

is automatically added to timed object-oriented modules.

2.3.1 A Series of Round Trip Time Examples

We exemplify object-oriented real-time specifications with a series of specifications of “protocols” for
computing the round trip times between nodes in a network (i.e., the time it takes for a message
to travel from a given initiator node to a given responder node, and back to the initiator, in a
network).

The setting will be overly simplified to illustrate real-time specifications without drowning the
reader in details. A Real-Time Maude specification of a “real” protocol for estimating round trip
times is given as part of the effort of modeling and analyzing the AER/NCA protocol suite [27].

The First “Protocol”

In the first, simplest setting, there is assumed to be one “sender” (or “initiator”) node and one
“responder” node in the network, each of which is modeled by an object. Communication is modeled
by “ordinary” message passing where it may take a message any amount of time to travel from one
node to another.

The protocol is very simple: The sender object (of class Sender) has a local clock, and starts the
protocol (in rule rttRequest) by sending an rtt?(r) message to the Responder object where r is
the current value of the sender’s clock attribute. When a responder reads the rtt?(r) message (in
rule rttResponse), it responds by sending a rttAck(r) message (i.e., with the same time stamp it
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read in the rtt? message) back to the sender. Finally (in rule treatRttResp), the sender receives
the rttAck message with the (original) time stamp, and finds the rtt value by comparing the time
stamp to the current time, as given by its local clock.

The findRtt message “kicks off” one round of the protocol. (So the presence of two findRtt

messages in the initial state will kick off two rounds of the protocol.) The protocol assumes that
there are only two objects in the network and there is therefore no need to add recipient and (and
sender) addresses to the messages.

The following module does not fix the time domain or the names of the objects involved:

(tomod RTT-1 is

class Sender | clock : Time, rtt : Time .

class Responder .

--- The sender sends a rtt? message with its current clock value and the

--- responder responds with an rttAck message with the received time stamp:

msgs rtt? rttAck : Time -> Msg .

--- An "findRtt" message starts the whole process:

msg findRtt : -> Msg .

var O : Oid . vars R R’ : Time .

--- Start round of protocol by sending a rtt? message with current

--- clock value:

rl [rttRequest] :

findRtt < O : Sender | clock : R > => < O : Sender | > rtt?(R) .

--- read rtt? message and respond with rttAck message:

rl [rttResponse] :

rtt?(R) < O : Responder | > => < O : Responder | > rttAck(R) .

--- read the response rttAck, and deduce the round trip time for this round:

rl [treatRttResp] :

rttAck(R) < O : Sender | clock : R’ >

=> < O : Sender | rtt : (R’ monus R) > .

--- Now, we come for the tick rule, where time may elapse

--- even if there are messages in the system:

rl [tick] :

{< O : Sender | clock : R > REST:Configuration}

=>

{< O : Sender | clock : R plus R’ > REST:Configuration}

in time R’ [nonexec] .

endtom)
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Time may elapse by any amount in the tick rule, regardless of whether there are messages in the
system. In this way, any amount of time (including zero) may elapse between the rttRequest and
rttResponse events and between the rttResponse and treatRttResp events. The effect of time
elapse on a configuration is that the local clock of the Sender is increased according to the time
elapsed.

The following module instantiates the object names and the time domain and defines an initial
state:

(tomod DISCRETE-RTT-1 is including NAT-TIME-DOMAIN .

including RTT-1 .

ops sender resp : -> Oid [ctor] . --- object identifiers

op initState : -> GlobalSystem .

eq initState = {findRtt

< sender : Sender | clock : 0, rtt : 0 >

< resp : Responder | >} .

endtom)

The definition of real-time rewrite theories in [31] does not allow additional operators and equations
of sort GlobalSystem. However, Real-Time Maude allows, for the purpose of conveniently defining
initial states, the user to introduce other operators of sort GlobalSystem, as long as each term of
sort GlobalSystem reduces to some term of the form {t} by the equations in the specification.

The Second Protocol

In the above version of the protocol it can happen that the rtt? or the rttAck message is not
received within reasonable time.4 In such cases it may be appropriate to assume that the message
is lost and/or that there are some serious problems with the message delivery.

In the second version of the rtt protocol we therefore consider only round trip times less than a
given MAX-RTT value. The sender assumes that something went wrong with the communication if
the rttAck is not received within time MAX-RTT of the sending of the rtt? request. In that case,
the sender initiates a new rtt-finding round at time MAX-RTT after the original rtt? message was
sent. If this new round doesn’t yield an rtt value within time MAX-RTT, the sender initiates yet
another round at time MAX-RTT after the start of the previous round, and so on, until an rtt value
less than MAX-RTT is finally found.

This version of the protocol introduces timers, which are intended to force actions to happen at
certain times. A timer is conveniently modeled by an attribute (called resendTimer below) with
value r if the timer should “ring” in time r from the current moment in time, and which has the
value INF when the timer is turned off. The tick rule(s) must ensure that time cannot advance
beyond the time in which a timer expires. Furthermore, time cannot advance when a timer value
is 0. This forces an action to be taken (rule resendRequestAndResetTimer below) to reset or turn
off the timer.

4We will use the tool to prove this claim later.
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(tomod RTT-WITH-RESEND is protecting NAT-TIME-DOMAIN-WITH-INF .

op MAX-RTT : -> Time .

class Sender | clock : Time, rtt : TimeInf, resendTimer : TimeInf .

class Responder .

msgs rtt? rttAck : Time -> Msg . --- as before

msg findRtt : -> Msg . --- start the protocol

var O : Oid . vars R R’ : Time . var TI : TimeInf .

--- Start protocol; must also set the timer:

rl [rttRequest] :

findRtt < O : Sender | clock : R >

=>

< O : Sender | resendTimer : MAX-RTT > rtt?(R) .

--- As before: responder reads and ack’s a rtt? message:

rl [rttResponse] :

rtt?(R) < O : Responder | >

=>

< O : Responder | > rttAck(R) .

--- Read ack within time MAX-RTT. Record the rtt value and

--- turn off resendTimer:

crl [treatRttResp] :

rttAck(R) < O : Sender | clock : R’ >

=>

< O : Sender | rtt : (R’ monus R), resendTimer : INF >

if (R’ monus R) < MAX-RTT .

--- Read and discard ack which would give an rtt value >= MAX-RTT:

crl [discardTooOldRttResp] :

rttAck(R) < O : Sender | clock : R’ >

=>

< O : Sender | >

if (R’ monus R) >= MAX-RTT .

--- Timer expires: send out a new rtt? message, and reset the timer:

rl [resendRequestAndResetTimer] :

< O : Sender | resendTimer : 0, clock : R >

=>

< O : Sender | resendTimer : MAX-RTT > rtt?(R) .
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--- Tick rule. Time cannot advance beyond the expiration time of the timer:

crl [tick] :

{< O : Sender | clock : R, resendTimer : TI > REST:Configuration}

=>

{< O : Sender | clock : R plus R’, resendTimer : TI monus R’ >

REST:Configuration}

in time R’

if R’ <= TI [nonexec] .

endtom)

The following module sets MAX-RTT to 10 and defines an initial state:

(tomod RTT-WITH-RESEND-INIT is including RTT-WITH-RESEND .

eq MAX-RTT = 10 .

ops sender resp : -> Oid [ctor] .

op initState : -> GlobalSystem .

eq initState =

{findRtt

< sender : Sender | rtt : INF, clock : 0, resendTimer : INF >

< resp : Responder | >} .

endtom)

Many Nodes and Non-instantaneous Message Transmission

The last version of the round trip protocol adds two aspects to the previous one:

• We allow any number of nodes in the system. Each node has a list of its neighbors, and each
node is interested in finding the round trip times to each of its neighbors. As in the previous
version, each rtt session must be repeated every MAX-RTT time units until an rtt value less
than MAX-RTT is found.

• It is not realistic that the round trip time between a pair of nodes can be 0. In this version
we assume that each message transmission takes at least time MIN-DELAY.

These changes are interesting because

• the tick rule must take many objects into account,

• each object needs many timers, i.e., one timer for each neighbor, and

• also (“delayed”) messages are affected by the elapse of time.

The following module DATA-TYPES defines some data types needed by the objects:
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• An object needs to store its set of neighbors. The sort OidSet defines a data type of sets of
object identifiers.

• An objects needs a timer for each of its neighbors. The sort Timers defines sets of timers of
the form timer(n,r), where r is the timer value associated to neighbor n.

• An object needs to store the computed rtt value for each of its neighbors. The sort RttValues
defines sets of terms rttValue(n,r), where r is the rtt value associated to neighbor n.

(tomod DATA-TYPES is

--- Data type for lists of Oid’s to store the list of neighbors:

sort OidSet .

subsort Oid < OidSet .

op none : -> OidSet [ctor] .

op _;_ : OidSet OidSet -> OidSet [ctor assoc comm id: none] .

--- Timer for a neighbor, and sets of such timers:

sorts Timer Timers .

subsort Timer < Timers .

op timer : Oid Time -> Timer [ctor] .

op noTimer : -> Timers [ctor] .

op _;_ : Timers Timers -> Timers [ctor assoc comm id: noTimer] .

var R : Time . var O : Oid . var OS : OidSet .

--- Initialize the given set of timers with the given time value:

op initializeTimers : OidSet Time -> Timers .

eq initializeTimers(none, R) = noTimer .

eq initializeTimers(O ; OS, R) = timer(O, R) ; initializeTimers(OS, R) .

--- Pairs of oid’s and rtt values:

sort RttValue RttValues .

subsort RttValue < RttValues .

op rttValue : Oid Time -> RttValue [ctor] .

op noValue : -> RttValues [ctor] .

op _;_ : RttValues RttValues -> RttValues [ctor assoc comm id: noValue] .

endtom)

To model “delay” in message transmission, we add a supersort DlyMsg and a “delay” operator dly,
which is a “message wrapper” around a message. The meaning of dly(m,r) is that the message
m will be ready in time r . That is, it will become m in time r . It is obvious that we want
dly(m,0) = m, so the delay operator can be declared with right identity 0:

sort DlyMsg . subsorts Msg < DlyMsg < NEMsgConfiguration .

op dly : Msg Time -> DlyMsg [ctor right id: 0] .
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The following module defines the messages in our specification:

• The usual messages rtt?, rttAck, and findRtt. The messages rtt? and rttAck are now
equipped with a receiver and a sender field, and the findRtt message is equipped with a field
denoting the object which should find its rtt values.

• The message wrapper dly.

• To be able to send a message to all the neighbors in one rule, we define a multiDlyRtt?

“message,” which takes as one of its arguments a set of Oids. The last two equations define
one such multiDlyRtt? message to a group of receivers to be equal to a set of single delayed
rtt? messages to each receiver in the group.

(tomod MSGS is

including DATA-TYPES .

protecting NAT-TIME-DOMAIN . --- needed for the value 0

msgs rtt? rttAck : Oid Oid Time -> Msg .

msg findRtt : Oid -> Msg .

sort DlyMsg .

subsorts Msg < DlyMsg < NEMsgConfiguration .

--- The dly operators on messages:

op dly : Msg Time -> DlyMsg [ctor right id: 0] .

--- A multiDlyRtt? message to a group of receivers is dissolved

--- into a set of single delayed messages to each receiver ...

msg multiDlyRtt? : OidSet Oid Time Time -> Configuration .

--- usage: multiDlyRtt?(receiver_group, sender, clock_value, min_trans_delay)

vars O O’ : Oid . var OS : OidSet . vars R R’ : Time .

eq multiDlyRtt?(none, O, R, R’) = none .

eq multiDlyRtt?(O ; OS, O’, R, R’) =

dly(rtt?(O, O’, R), R’) multiDlyRtt?(OS, O’, R, R’) .

endtom)

The protocol itself is given in the following module. In rule findRttOfAllNbrs a node sends a
rtt? request, with delay MIN-DELAY to all of its neighbors, using the multiDlyRtt? operator. The
node also initializes the timers for each neighbor to MAX-RTT. In rule ackRequest a node O receives
an rtt? message from node O’ and immediately responds with an rttAck message to O’. In rule
recAckOK an rttAck message from O’ is received by O within time MAX-RTT from the start of the
rtt? request and O stores the appropriate rtt value to its neighbor O’. The timer for object O’ is
also turned off. The rule recAckTooOld receives an rttAck message too late and just ignores the
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message. In the rule resendRttRequest the timer for object O’ has expired and the object O starts
a new round of the protocol by sending a rtt? message to O’.

The function mte will compute the smallest timer value in the configuration, and the function delta

will update the timers, the clocks, and the message delays according to the elapsed time. The tick
rule is typical for object-oriented specifications.

(tomod MANY-RTTS is

including MSGS .

including NAT-TIME-DOMAIN-WITH-INF .

ops MAX-RTT MIN-DELAY : -> Time .

class Node | clock : Time,

nbs : OidSet,

resendTimers : Timers,

rttValues : RttValues .

vars O O’ : Oid . var OS : OidSet . vars R R’ R’’ : Time .

var TIMERS : Timers . var RTTVALS : RttValues .

--- Start: send a rtt? message, with appropriate min delay, to all neighbors:

rl [findRttOfAllNbrs] :

findRtt(O)

< O : Node | nbs : OS, clock : R, resendTimers : TIMERS >

=>

< O : Node | resendTimers : TIMERS ; initializeTimers(OS, MAX-RTT) >

multiDlyRtt?(OS, O, R, MIN-DELAY) .

--- Reception of a rtt? message is done by ack’ing with the same time stamp:

rl [ackRequest] :

rtt?(O, O’, R) < O : Node | >

=>

< O : Node | > dly(rttAck(O’, O, R), MIN-DELAY) .

--- Reception of an ack within time MAX-RTT:

crl [recAckOK] :

rttAck(O, O’, R)

< O : Node | clock : R’, rttValues : RTTVALS,

resendTimers : TIMERS ; timer(O’, R’’) >

=>

< O : Node | rttValues : RTTVALS ; rttValue(O’, R’ monus R),

resendTimers : TIMERS >

if R’ monus R < MAX-RTT .
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--- Reception of a too old message which is just discarded:

crl [recAckTooOld] :

rttAck(O, O’, R) < O : Node | clock : R’ >

=>

< O : Node | >

if R’ monus R >= MAX-RTT .

--- Resend a rtt? request to O’ when the timer for O’ expires:

rl [resendRttRequest] :

< O : Node | clock : R, resendTimers : TIMERS ; timer(O’, 0) >

=>

< O : Node | resendTimers : TIMERS ; timer(O’, MAX-RTT) >

dly(rtt?(O’, O, R), MIN-DELAY) .

--- Now, the tick rule must

--- increase all clocks

--- decrease all timers

--- decrease the remaining dly-time for dly-messages

--- with the elapse of time

--- and must not advance time beyond the first point in time

--- a timer could expire:

crl [tick] :

{C:Configuration} => {delta(C:Configuration, R)} in time R

if R <= mte(C:Configuration) [nonexec] .

--- Delta models the effect of time elapse on a system:

op delta : Configuration Time -> Configuration [frozen (1)] .

eq delta(none, R) = none .

eq delta(NeC:NEConfiguration NeC’:NEConfiguration, R) =

delta(NeC:NEConfiguration, R) delta(NeC’:NEConfiguration, R) .

eq delta(< O : Node | clock : R, resendTimers : TIMERS >, R’) =

< O : Node | clock : R + R’, resendTimers : delta(TIMERS, R’) > .

eq delta(dly(M:Msg, R), R’) = dly(M:Msg, R monus R’) .

op delta : Timers Time -> Timers .

eq delta(noTimer, R) = noTimer .

eq delta(timer(O, R) ; TIMERS, R’) =

timer(O, R monus R’) ; delta(TIMERS, R’) .

--- mte finds the "next" sometime some instantaneous rule must be applied:

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF .

eq mte(NeC:NEConfiguration NeC’:NEConfiguration) =

min(mte(NeC:NEConfiguration), mte(NeC’:NEConfiguration)) .
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eq mte(< O : Node | resendTimers : TIMERS >) = mte(TIMERS) .

eq mte(DM:DlyMsg) = INF . --- no stopping necessary when message ripe!

op mte : Timers -> TimeInf .

eq mte(noTimer) = INF .

eq mte(timer(O, R) ; TIMERS) = min(R, mte(TIMERS)) .

endtom)

The following module defines MIN-DELAY to be 1, MAX-RTT to be 5, and defines an initial state with
four nodes, where nodes n2 and n4 should find the round trip time to each neighbor

(tomod TEST-MANY-RTTS is including MANY-RTTS .

ops n1 n2 n3 n4 : -> Oid [ctor] . --- Names of nodes:

eq MAX-RTT = 5 . eq MIN-DELAY = 1 .

op initState : -> GlobalSystem .

eq initState =

{findRtt(n2)

findRtt(n4)

< n1 : Node | clock : 0, nbs : n2 ; n3 ; n4,

resendTimers : noTimer, rttValues : noValue >

< n2 : Node | clock : 0, nbs : n1,

resendTimers : noTimer, rttValues : noValue >

< n3 : Node | clock : 0, nbs : n1 ; n4,

resendTimers : noTimer, rttValues : noValue >

< n4 : Node | clock : 0, nbs : n1 ; n3,

resendTimers : noTimer, rttValues : noValue >} .

endtom)

Finally, we can model the setting where it takes exactly time MIN-DELAY for each message to travel
from source to destination by just replacing the equation

eq mte(DM:DlyMsg) = INF .

with the equation

eq mte(dly(M:Msg, R:Time)) = R:Time .

since mte(m) will equal 0 for any ripe message m, because m is equivalent to dly(m,0) due to
the dly operator having right identity 0.
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Chapter 3

Executing Timed Modules

Real-Time Maude provides three main ways of analyzing timed modules:

• rewriting : one behavior of the system from a specified initial state is simulated;

• search: all possible behaviors of the system—relative to a chosen time sampling strategy as
explained below—from a given initial state are analyzed in a breadth-first way to search for
states which match a given search pattern satisfying a given condition;

• linear temporal logic model checking : checks whether all possible behaviors—again relative to
a time sampling strategy—from a given initial state satisfy a given temporal logic property.

(By a behavior we mean a sequence of rewrite steps.)

The Maude system provides high-performance rewriting, search, and model checking for (untimed)
rewrite theories. Although the Maude commands could be used to analyze timed modules, after
a suitable transformation of a timed module into an untimed module, Real-Time Maude provides
real-time-specific versions of these commands for the following reasons:

• It is often natural to relate the rewriting, search, and model checking to the time elapsed in
the system. Instead of simulating n rewrite steps of a system it may be more interesting to
simulate a behavior of the system for ∆ milliseconds. Likewise, Real-Time Maude’s search
command allows the user to search for states which are reachable in a certain time interval
from the initial state. Real-Time Maude’s model checking command can check whether a
temporal logic property holds for all runs restricted to a maximal duration of ∆. It is worth
noticing that the temporal logic formula being checked describes an untimed property. That
is, Real-Time Maude does not explicitly deal with timed temporal logics, such as e.g. the
tool Kronos [40]. However, the temporal logic properties may be “clocked” in that they may
talk about the duration “associated” to a state; that is, time appears in the state predicates
associated to states of the system, as well as in the maximal duration ∆ to which the formula
is restricted.

• Time-bounded search and model checking is a reasonably natural way of restricting the pos-
sibly infinite number of reachable states in a system to the finite subset which is reachable
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within a given time. The restricted system, being finite-state, can be subjected to search and
model checking.

• Systems with dense time domain are naturally modeled with nondeterministic tick rules as
described earlier. These rules are not executable. Since the expressiveness of the real-time
rewrite model makes it in general impossible to deal with dense time using the “clock region”
construction of timed automata, the tool instead offers a couple of “time sampling” strategies
for dealing with dense time. These strategies are described in Section 3.3. All rewriting is
performed relative to the chosen time sampling strategy. There is in general no guarantee that
all “interesting” behaviors are covered by a time sampling strategy, which of course impacts
search and model checking. Nevertheless, as mentioned, we have identified certain criteria
which make maximal time sampling analyses complete [34].

The current version of Real-Time Maude tries to take as much advantage of the high performance
of the Maude engine as possible. This is achieved by executing each Real-Time Maude command
by first transforming the current timed module into an ordinary (Full) Maude module and then
executing the resulting module in Maude. The actual transformation differs from command to
command; they are all described in [33]. These transformations are all based on the transformation
given in [31] where a “clock” component is added to the state. In particular, each timed module
automatically imports the following module TIMED-PRELUDE:

fmod TIMED-PRELUDE is

including TIME .

sorts System GlobalSystem ClockedSystem .

subsort GlobalSystem < ClockedSystem .

op {_} : System -> GlobalSystem [format (g o g so)] .

op _in time_ : GlobalSystem Time -> ClockedSystem [format (o g g y o)] .

eq (CLS:ClockedSystem in time R:Time) in time R’:Time =

CLS:ClockedSystem in time (R:Time plus R’:Time) .

endfm

The most basic translation from a timed module to an ordinary module is then just the identity
translation. The resulting module is further modified, e.g. by accommodating time limits and time
sampling strategies, before a command is executed [35]. In this way, a large majority of Real-Time
Maude’s commands can be executed directly using the Maude engine. The few Real-Time Maude
commands which cannot be executed in Maude after some theory transformation are much less
efficiently executed, but can still be useful as shown in our large AER/NCA case study [28].

Most Real-Time Maude commands also have a version which ignores the time component com-
pletely, in which case the transformation is based on the “forgetful” translation given in [31].
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3.1 Running Real-Time Maude

Once Maude is installed and the file real-time-maude.maude is downloaded, Real-Time Maude is
started by executing the file real-time-maude.maude in Maude.

Input to Real-Time Maude can then be given either in a file which is read by Maude using Maude’s
in or load command, and/or can be entered directly at the Maude command-line. To start Real-
Time Maude and enter the module DISCRETE-CLOCK-24, one may give the command1

UNIX> maude clock.rtmaude

if clock.rtmaude is the name of a file containing

load real-time-maude.maude

(tmod DISCRETE-CLOCK-24 is protecting NAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

var N : Time .

crl [tick] : {clock(N)} => {clock(N + 1)} in time 1 if N < 24 .

rl [reset] : clock(24) => clock(0) .

endtm)

(assuming that the file real-time-maude.maude lies in an appropriate directory2).

One may of course also start Real-Time Maude and then enter the module directly:

UNIX> maude real-time-maude.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

Maude 2.3 built: Feb 14 2007 17:53:50

Copyright 1997-2007 SRI International

Wed Aug 8 16:11:44 2007

Full Maude 2.3 ‘(February 12th‘, 2007‘)

Real-Time Maude 2.3 extension May 2, 2007

Maude> (tmod DISCRETE-CLOCK-24 is

> protecting NAT-TIME-DOMAIN .

. . .

> rl [reset] : clock(24) => clock(0) .

1We use slanted text to denote user input at the command line.
2The Maude manual explains where Maude looks for files to read.
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> endtm)

Introduced timed module: DISCRETE-CLOCK-24

3.2 The help Command

Real-Time Maude comes equipped with a help command which describes the commands in some
detail. The command (help .) presents a larger help menu of available help commands:

Maude> (help .)

Real-Time Maude help menu.

Provides the syntax and short description of time-specific commands.

Please choose between the following help commands:

help rewrite . help trew . help tfrew .

help search . help tsearch . help utsearch .

help check . help diamond . help until .

help until-stable .

help find . help earliest . help latest .

help mc . help model-check .

help tick-mode . help set . help get .

The command (help tsearch .) explains the tsearch command:

Maude> (help tsearch .)

Command tsearch: Timed search.

Performs a "timed" search from a given initial state within a user-defined

time interval and with the given tick mode. The (initial state and the)

...

3.3 Time Sampling Strategies

We have previously mentioned that it is natural to have tick rules of either of the forms3

crl [l] : {t} => {t ′} in time x if cond /\ x le u /\ cond ′ [nonexec] . (†),
crl [l] : {t} => {t ′} in time x if cond /\ x lt u /\ cond ′ [nonexec] . (‡),
crl [l] : {t} => {t ′} in time x if cond [nonexec] . (∗), or
rl [l] : {t} => {t ′} in time x [nonexec] . (§),

3For convenience, Real-Time Maude treats conditions of the form x <= u and x < u as x le u and x lt u when
the former are well-formed, and assumes that <= has the same meaning as le.
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where x is a variable of sort Time (or of a subsort of Time) which does not occur in {t} and which
is not initialized in the condition. The term u denotes the maximum amount by which time can
advance in one tick step. Each variable in u should either occur in t or be instantiated in cond .
The (possibly empty) conditions cond and cond ′ should not further constrain x (except possibly
by adding the condition x =/= zero). Tick rules in which the time increment is not given by the
match are called time-nondeterministic. All other tick rules are called time-deterministic and can
be used e.g. in discrete time domains. Time-nondeterministic tick rules of the above forms allow
the possibility of “visiting” any moment in time less than (or equal to) time u from the current
time. Such rules are not directly executable in Maude, since it is not clear which values to assign to
the variable x in a rewrite step. Real-Time Maude allows the user to choose from the following set
of predefined time sampling strategies (also called tick modes), whose precise meaning is described
in [35], for instantiating the variable R in each application of the tick rules:

• Deterministic mode. This does not handle time-nondeterministic tick rules and is the “de-
fault” mode which is used until a user chooses a new tick mode.

• Default mode. The default mode is parameterized by a time increment value ∆. A time-
nondeterministic tick rule having any of the above forms is treated by advancing time by an
amount of ∆ if possible. When the tick rule has form (†), time is advanced by the smallest
value of u and ∆.

• Maximal mode. The maximal mode should only be used when the time-nondeterministic tick
rules have the form (†). A tick rule is then applied by advancing time by the maximal possible
amount, namely u.4

• Maximal/default mode. The maximal/default mode is parameterized by a time value ∆. Tick
rules are applied using a maximal time advance strategy if possible, and by trying to advance
time by the default value ∆ if the maximal strategy cannot be applied, either because the
maximal time increase is INF, or because the tick rule does not have the form (†).

The user chooses the “current” tick mode by giving one of the following commands:

(set tick def timeValue .) --- default tick mode

(set tick max .) --- maximal mode

(set tick max def timeValue .) --- maximal/default mode

(set tick det .) --- deterministic mode

The command

(show tick mode .)

shows the current tick mode.

4In the unusual case when there is more than one match with the tick rule and the maximum possible time increase
term u has different values in the different matches, then the value of u corresponding to the chosen match will be
used in the rule application.
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The tick mode stays unchanged until another tick mode is selected. All applications of nondeter-
ministic tick rules—be it for rewriting, search, or model checking—are performed using the strategy
corresponding to the current tick mode. The nonexec attribute of time-nondeterministic tick rules
of the above forms is “removed” when a time sampling strategy has been applied to the rule.

Using either of these strategies when applying the tick rules means that some potential behaviors
in the system, namely those obtained by applying the tick rules differently, are not analyzed. The
discretization provided by the time sampling strategies does not in general preserve all interesting
properties of the system, and all analysis results should be understood in this light. This is in
contrast to, e.g., timed and hybrid automata where there exist methods to discretize systems with
dense time domains so that all interesting properties are preserved [2]. We are currently working on
identifying cases in which the tick rule application strategies actually preserve properties of timed
modules.

3.4 Tick Rules with zero Time Increase

Real-Time Maude does not apply a tick rule when time would advance by an amount equal to zero.
There is no logical reason for this since an instantaneous transition may be modeled as a tick rule
with duration zero. The choice is a pragmatic one, based on the fact that all tick rules we have
encountered do not change the state of the system when time is advanced by time zero. There can
of course be other instantaneous rules in the specification that take zero time, but typically they
are not tick rules.

3.5 Timed Rewriting

Real-Time Maude’s timed rewrite and timed fair rewrite commands can be used to simulate one
behavior (i.e., one sequence of rewrite steps) of a system starting with a given initial state. The
rewriting can be time bounded, to simulate a behavior up to a certain duration, and/or can be
restricted by the number of rewrite steps to perform. The timed rewrite commands use the current
tick mode to treat tick rules with nondeterministic time increase. The result of a timed rewrite
command is the last state of the simulated behavior together with a time stamp denoting the total
duration of the rewrite sequence.

The timed rewrite and timed fair rewrite commands are based on Maude’s rewrite and fair rewrite
commands, where the difference between these two Maude commands is that rewrite uses a “rule-
fair” top-down strategy to apply the rules, while fair rewrite uses a “rule and position-fair” appli-
cation of the rewrite rules (see e.g. [8] for further explanation).

The syntax of the three versions of the timed rewrite command is

(trew [[n]] [in module :] initState with no time limit .)

(trew [[n]] [in module :] initState in time <= timeLimit .)

(trew [[n]] [in module :] initState in time < timeLimit .)
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where the ‘[n]’ and ‘in module :’ parts are optional. The number n denotes the upper bound
on the number of rewrite steps to perform (default is “no limit”), module denotes the name of the
module in which the rewrite is to be performed (the “current” module is the default), and initState
is the initial state (which should be a ground term of sort GlobalSystem). The last part of the
command denotes an upper bound on the total duration of the rewrite sequence, where timeLimit
is a ground term of sort Time. The timed fair rewrite command has the same syntax but with the
keyword trew replaced by tfrew.

We can simulate the behavior of the clock in the DISCRETE-CLOCK-24 module in time 100 by the
following command:

Maude> (trew {clock(0)} in time <= 100 .)

The result is

{clock(4)} in time 100

If we instead want to prototype a dense clock as defined in the DENSE-CLOCK-1 module, then we
first need to define a tick mode, say as “default” mode in which time is always advanced by 1/2 a
time unit:

Maude> (set tick def 1/2 .)

The clock may be simulated e.g. as follows:

Maude> (trew {clock(0)} in time <= 100 .)

Result ClockedSystem :

{stopped-clock(24)} in time 100

Maude> (tfrew {clock(0)} in time <= 10 .)

Result ClockedSystem :

{stopped-clock(0)} in time 10

Likewise, we may test our thermostat system by first setting the default time increase to say, 4,
and then simulate the system:

Maude> (tfrew {on , 68} in time <= 100 .)

Result ClockedSystem :

{off , 70} in time 97

which gives a temperature in the desired range. (The total duration of the simulated behavior is
not a multiple of 4, since the maximal possible time elapse may have been less than 4 in some tick
steps.)

Finally, we can test our largest round trip time protocol example TEST-MANY-RTTS, where the nodes
n2 and n4 are supposed to find rtt values between 2 and 5 to their neighbors:
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Maude> (set tick def 1 .)

Maude> (tfrew initState in time < 100 .)

Result ClockedSystem :

{< n1 : Node | clock : 99, nbs : (n2 ; n3 ; n4), resendTimers : noTimer,

rttValues : noValue >

< n2 : Node | clock : 99, nbs : n1, resendTimers : noTimer,

rttValues : rttValue(n1,2)>

< n3 : Node | clock : 99, nbs :(n1 ; n4), resendTimers : noTimer,

rttValues : noValue >

< n4 : Node | clock : 99, nbs :(n1 ; n3), resendTimers : noTimer,

rttValues : (rttValue(n1,2); rttValue(n3,4))>} in time 99

3.5.1 Tracing a Rewrite

Instead of just getting the final state of a rewrite sequence from the timed rewrite command, we
may sometimes want to analyze the behavior leading to that final state. A timed rewrite can be
traced by turning on Maude’s tracing capabilities [8]. Each rewrite step taken in the rewrite will
then be shown, together with additional useful information. Tracing can be turned on by giving
the following sequence of Maude commands during the Real-Time Maude session:

Maude> set trace on .

Maude> trace exclude REAL-TIME-MAUDE .

Maude> set trace substitution off .

Maude> set trace eq off .

The trace will be shown if we then give a timed rewrite command:

Maude> (tfrew {clock(0)} in time <= 10 .)

Tracing can be turned off at any time by giving the Maude command set trace off .

3.6 Search

Real-Time Maude takes advantage of Maude’s search capabilities to provide timed and untimed
search commands which can analyze all behaviors from an initial state, relative to the chosen time
sampling strategy, by searching for certain states.

3.6.1 Timed Search

Maude’s search command searches for states which are matched by a search pattern satisfying a
given condition and which can be reached from the initial state by a sequence of rewrite steps.
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Search is performed in Maude using a “breadth-first” strategy and caching the visited states to
avoid searching twice from the same state. A search will therefore always terminate if the set of
states reachable from the initial state is finite. The search command may be parameterized by
an upper bound on the number of solutions to look for. Each reachable state matched by the
search pattern will eventually be found, given sufficient time and computer memory. The search
terminates when the desired number of states has been found.

Real-Time Maude’s timed search command uses Maude’s search capabilities and allows the user
to search for states that are reachable in a certain time interval from the initial state. By giving
an upper bound on the time interval in which to look for solutions one can be ensured that the
execution of the search command terminates, as long as instantaneous rules terminate and the tick
rules don’t lead to “Zeno” behavior when executed with the given time sampling strategy. To allow
for timed search, each state is equipped with timestamps denoting the time used to reach the state.
A state may have more than one associated time stamp, as exemplified below.

The search pattern is a term, possibly containing variables, of sort GlobalSystem. It is required
that the search pattern p be ground irreducible (i.e., no instance σ(p) of p can be reduced using
the equations unless some σ(xi ) can be reduced). Like in Maude, we may add a semantic condition
on the variables occurring in the search pattern.

Timed search takes the time sampling strategy into account when applying the tick rules so that,
as exemplified below, some reachable states may be missed by the search command.

The syntax variants of the timed search command are the following:

(tsearch [[n]] [in module :] initState =>* searchPattern [such that cond ]
with no time limit .)

(tsearch [[n]] [in module :] initState =>* searchPattern [such that cond ]
in time ∼ timeLimit .)

(tsearch [[n]] [in module :] initState =>* searchPattern [such that cond ]
in time-interval between ∼ timeLimit and ∼′ timeLimit ′ .)

where the ‘[n]’, ‘in module :’, and ‘such that cond ’ parts are optional. The initial state initState
is a ground term of sort GlobalSystem, the search pattern searchPattern is a ground irreducible
term of sort GlobalSystem, ∼ and ∼′ are either <, <=, >, or >=, and timeLimit and timeLimit ′ are
ground terms of sort Time. The condition cond is an ordinary Maude condition on the variables
appearing in the search pattern. The presence of ‘[n]’ in the search command means that we are
searching for at most n solutions. Notice that this number may be somewhat misleading since the
same state with different time stamps will be counted as multiple solutions.

Note: The variables which appear in the search condition cond must be given in their full form,
such as N:Nat, instead of a possible short form N for variables declared explicitly in the module.
Furthermore, ‘such that’ may be abbreviated ‘s.t.’.

These commands search for states reachable in zero or more rewrite steps from the initial state.
One can search for states reachable in one or more steps by replacing the arrow =>* with =>+,
for states reachable in exactly one step by using the arrow =>1, and for states which may not be
further rewritten (“deadlocked” states) by using the arrow =>!.
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The result of a timed search is either that no state matched by the search pattern is found, or a
set of substitutions of the variables of the search pattern which characterize the states matched by
the pattern, including the “timestamp” TIME_ELAPSED.

Note: The current version of Full Maude and Real-Time Maude does not support having a bound
on the number of rewrites in the search command.

3.6.2 Examples.

The following timed search shows that no state {clock(r)} with r > 24 can be reached within
time 1000 from the state {clock(0)} in the module DISCRETE-CLOCK-24:

Maude> (tsearch {clock(0)} =>* {clock(R:Time)} such that R:Time > 24 in time < 1000 .)

No solution

The state {clock(12)} may of course be reached from the state {clock(0)}:

Maude> (tsearch [2] {clock(0)} =>* {clock(12)} in time <= 1000 .)

Solution 1

TIME_ELAPSED:Time --> 12

Solution 2

TIME_ELAPSED:Time --> 36

We got two solutions of the same state, because of the associated time stamps. The first two
occasions in which state {clock(12)} can be reached happen at time 12 and 36. It is of course
not possible to reach {clock(12)} in the time-interval [13, 36):

Maude> (tsearch [1] {clock(0)} =>* {clock(12)} in time-interval between >= 13 and < 36 .)

No solution

To analyze the thermostat system, a tick mode must be entered because of its nondeterministic
time increase. The following command will increase time by 1 in each step:

Maude> (set tick def 1 .)

Although the temperature can certainly reach 70 1/2 degrees, this will not be found during a
search because this state is not encountered when time always advances by 1 time unit:

Maude> (tsearch {on, 68} =>* {X:ThermoState, 141/2} in time < 1000 .)

No solution
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However, if we instead set the default time advance to 1/2, the above pattern should be reached:

Maude> (set tick def 1/2 .)

...

Maude> (tsearch [1] {on, 68} =>* {X:ThermoState, 141/2} in time < 1000 .)

Solution 1

TIME_ELAPSED:Time --> 13/2 ; X:ThermoState --> off

The temperature will fortunately not reach any unpleasantly temperature within time 1000:

Maude> (tsearch [1] {on, 68} =>* {X:ThermoState, R:Time}

> such that R:Time < 62 or R:Time > 74

> in time <= 1000 .)

No solution

3.6.3 Untimed Search

The internal representation of the states in a timed search adds “time stamps” to the states. The
time-stamp of a term t denotes the duration of the rewrite sequence from the initial state to
t . However, there may be many behaviors leading to t , which means that more than one time
stamp may be associated to t . There is therefore an infinite set of reachable “time-stamped
states” from any state in deadlock-free non-Zeno systems. While timed search allows to re-
strict the state space by giving a time bound so that infinite-state systems can be analyzed,
the addition of time stamps is disadvantageous in case the reachable state space is finite. In
the specification DISCRETE-CLOCK-24 the timestamped states are {clock(0)} in time 0, . . . ,
{clock(24)} in time 24, {clock(0)} in time 24, {clock(1)} in time 25, . . . , while the reach-
able states from {clock(0)} are just {clock(0)}, . . . , {clock(24)} if the time stamps are ignored.

Real-Time Maude’s untimed search command ignores the time stamps and therefore does not allow
search within time intervals, but takes into account the time sampling strategy when applying the
tick rules. The syntax of the untimed search command is

(utsearch [[n]] [in module :] initState =>* searchPattern [such that cond ] .)

where the ‘[n]’, ‘in module :’, and ‘such that cond ’ parts are optional. The initial state initState
is a ground term of sort GlobalSystem and the search pattern searchPattern is a ground irreducible
term of sort GlobalSystem. As for timed search, one can search for states reachable in one or more
steps by replacing the arrow =>* with =>+, for states reachable in exactly one step by using the
arrow =>1, and for states which may not be further rewritten (“deadlocked” states) by using the
arrow =>!. Again, just like in Full Maude, all variables which appear in the search condition cond
must be given in full, i.e., in the form Var:Sort.

Using untimed search we can make sure that the clock will never reach state {clock(r)} with r
> 24 when started from state {clock(0)}:
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Maude> (utsearch {clock(0)} =>* {clock(R:Time)} such that R:Time > 24 .)

No solution

Likewise, we can show that the system will never deadlock:

Maude> (utsearch {clock(0)} =>! GS:GlobalSystem .)

No solution

3.6.4 Search in Object-Oriented Systems

In earlier versions of Real-Time Maude and Full Maude, a search for a reachable state matching
an object pattern

< O:Oid : C | attrPattern >

would yield that such a state was not found if

• an object matching the “pattern” belongs to a proper subclass of the class C , or

• not all the attributes in the corresponding object are captured in attrPattern.

For example, in a specification

class C | att1 : Nat .

class D | att2 : Nat . subclass D < C .

var N : Nat . var O : Oid .

crl [increaseAtt1] :

< O : C | att1 : N > => < O : C | att1 : N + 1 > if N < 12 .

op o : -> Oid .

a (Full Maude) untimed search command

(search < o : D | att1 : 0, att2 : 0 > =>* < O:Oid : C | att1 : 10 > .)

returns ’No solution’ since the matching object o belongs to the proper subclass D of C. Changing
the search command to

(search < o : D | att1 : 0, att2 : 0 > =>* < O:Oid : D | att1 : 10 > .)
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still returns ’No solution’ since the attribute att2 is not included in the pattern.

In my view, the intuitive meaning of the first of the above search commands is that we are searching
for any object of a class C, including of any subclass of C, that has an attribute att1 whose value
is 10. According to this understanding, the “correct” version of that search command would be

(search < o : D | att1 : 0 > =>* < O:Oid : X:C | att1 : 10, ATTS:AttributeSet > .)

which indeed finds a solution.

Real-Time Maude supports my desired semantics in its tsearch and utsearch (as well in the
pattern-based commands described in Sections 3.7 and 3.9) by internally replacing each object
pattern < o : C | attsPattern > in the search pattern by the pattern

< o : CLASS_OF_o:C | attsPattern, REMAINING_ATTRIBUTES_OF_o:AttributeSet >

in flat object-oriented specifications (which are the ones for which useful specification techniques
have been developed). Therefore, the Real-Time Maude search command

(utsearch < o : D | att1 : 0 > =>* < O:Oid : C | att1 : 10 > .)

in our example returns the solution

CLASS_OF_O:C --> D ; O:Oid --> o ;

REMAINING_ATTRIBUTES_OF_O:AttributeSet --> (none).AttributeSet

In case C in the pattern already is a variable, it remains unchanged; likewise, if attsPattern already
contains a variable of sort AttributeSet, no new variable is added.

Examples.

Let us now use timed search to analyze our first round trip time specification DISCRETE-RTT-1

with default time set to 1. We claimed that messages may take any amount of time to be read by
the recipient, so there should be a possibility that the round trip time is 0 and that there are is no
message in the system:

Maude> (tsearch [1] initState =>*

> {< sender : Sender | rtt : 0 >

> < resp : Responder | >} in time < 12 .)

Solution 1

CLASS_OF_resp:Responder --> Responder ;

ATTRIBUTES_OF_resp:AttributeSet --> (none).AttributeSet ;

CLASS_OF_sender:Sender --> Sender ;

REMAINING_ATTRIBUTES_OF_sender:AttributeSet --> clock : 0 ;

TIME_ELAPSED:Time --> 0
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The messages may take arbitrary long time to arrive, so that the round trip time could possibly be
200:

Maude> (tsearch [1] initState =>*

> {< sender : Sender | rtt : 200 >

> < resp : Responder | >} with no time limit .)

Solution 1

CLASS_OF_resp:Responder --> Responder ;

ATTRIBUTES_OF_resp:AttributeSet --> (none).AttributeSet ;

CLASS_OF_sender:Sender --> Sender ;

REMAINING_ATTRIBUTES_OF_sender:AttributeSet --> clock : 200 ;

TIME_ELAPSED:Time --> 200

The message rtt? may “never” arrive so that an rtt? message with timestamp 0 may still be
unread at time 200 (and at time 10000, etc.):

Maude> (tsearch [1] initState =>* {C:Configuration rtt?(0)} in time > 200 .)

Solution 1

C:Configuration --> < resp : Responder | none >

< sender : Sender | clock : 201, rtt : 0 > ;

TIME_ELAPSED:Time --> 201

Finally, we analyze our most complex round trip time protocol. All recorded rtt values should be
greater than or equal to 2 * MIN-DELAY and strictly smaller than MAX-RTT. A first prototyping
using timed rewriting gave an encouraging result, as all the rtt values were computed and were
within the desired range. The following search command checks whether a rtt value outside the
desired range can be recorded within time 10:

Maude> (tsearch [1] initState =>*

> {C:Configuration

> < O:Oid : Node | rttValues : RTTVALS:RttValues ;

> rttValue(O’:Oid, RTTVAL:Time) >}

> such that RTTVAL:Time < (2 * MIN-DELAY)

> or RTTVAL:Time >= MAX-RTT

> in time <= 10 .)

No solution

3.7 Finding the Shortest and Longest Time to Reach a State

Real-Time Maude has two time-specific search commands for finding, respectively, the shortest and
the longest time it takes to reach a desired state.

The find earliest command has syntax
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(find earliest initState =>* searchPattern [such that cond ] .)

and returns the state matched by searchPattern which is reachable in the shortest time from the
initial state. The arrow =>* can not be replaced by another arrow.

The find latest command explores all behaviors from the initial state and returns the desired state
which took the longest time to reach for the first time in a behavior (see [35] for a formal definition
of this command). If there is a path in which the desired state does not occur, the command returns
a negative answer. This command is therefore also a model checking command for the eventually
properties. The syntax is

(find latest initState =>* searchPattern [such that cond ] with no time limit .)

and

(find latest initState =>* searchPattern [such that cond ] in time ∼ timeLimit .)

where the ‘such that cond ’ part is optional and where ∼ is either < or <=. The find latest command
is implemented without using Maude’s search capabilities and is therefore less efficient than the
above commands.

The find commands can show the unsurprising fact that the state {clock(24)} is reached for the
first time in time 24 in all behaviors from the state {clock(0)} in the module DISCRETE-CLOCK-24:

Maude> (find earliest {clock(0)} =>* {clock(24)} .)

Result: {clock(24)} in time 24

Maude> (find latest {clock(0)} =>* {clock(24)} with no time limit .)

Result: {clock(24)} in time 24

In the round trip module DISCRETE-RTT-1 the initial state may reach a stable state without mes-
sages in zero time, and on the other hand it may not reach such a stable state in time 100:

Maude> (find earliest initState =>* {OBJECTS:ObjectConfiguration} .)

Result: {< sender : Sender | rtt : 0, clock : 0 >

< resp : Responder | none >} in time 0

Maude> (find latest initState =>* {OBJECTS:ObjectConfiguration} in time <= 100 .)

Result: there is a path in which the pattern is not reachable in time <= 100

The treatment of object patterns in these commands is the same as for the search command.
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3.8 Temporal Logic Model Checking

Maude is equipped with a high-performance linear temporal logic (see e.g. [20, 12]) explicit-state
model checker [11] which provides on-the-fly model checking. Real-Time Maude extends Maude’s
model checker to provide time-bounded model checking as well as untimed model checking. Adding
a time bound to consider only behaviors up to the bound restricts a potentially infinite set of
reachable states to a finite set which can be model checked. In case the set of reachable states is
finite even without time bounds, the system may be model checked using untimed model checking,
which ignores the time stamps. It is again worth remembering that the time sampling strategy
is taken into account when applying the tick rules, so that, for dense time domains, the model
checker may find that a formula holds even though there exist behaviors of the system in which
the property does not hold, just as we illustrated for timed search above. On the other hand, if a
counterexample is found, it is indeed a real counterexample. In [34] we give some (usually easily
checkable) criteria that ensure that maximal time sampling strategy analyses “cover” all essential
behaviors, so that a formula can be proved correct by model checking. Timed model checking can
of course prove properties when the time domain is discrete.

The temporal properties which can be defined are formulas in untimed propositional linear temporal
logic, and not in some real-time temporal logic which can be defined in tools such as e.g. Kronos [40].
The atomic formulas may nevertheless be clocked properties whose truth value depends on the
current time stamp.

The temporal logic formulas should be defined in a module which imports the module to be ana-
lyzed as well as the predefined module TIMED-MODEL-CHECKER (which adds a subsort declaration
ClockedSystem < State to Maude’s module MODEL-CHECKER module). This module defines the
set of temporal formulas as a data type Formula. The user should declare and define the atomic
propositions as ground terms of sort Prop and define their semantics by equations.

The temporal logic language is built up by the atomic propositions, the constants True and False,
the logical operators ~ (negation), /\ (conjunction), \/ (disjunction), -> (implication), and <->

(equivalence), and the temporal operators U (“until”), <> (“eventually”), [] (“always”), W (“weak
until”), R (“release”), O (“next”), |-> (“leads-to”), => (“always implies”), and <=> (“always equiv-
alent”). Atomic propositions—which may be parametrized—should be declared to be terms of sort
Prop. In time-bounded model checking we allow both state propositions, which state properties
about the system state (of sort GlobalSystem), and clocked propositions, which also consider the
time stamp in a time-stamped state.

To model check our clock DENSE-CLOCK-1, we can define in a module MODEL-CHECK-DENSE-CLOCK

the atomic propositions clock-running, which is intended to hold in all states where the clock
is still running, and clock-dead, which is intended to hold in states where the clock is no longer
running due to battery problems:

(tmod MODEL-CHECK-DENSE-CLOCK is

including TIMED-MODEL-CHECKER .

protecting DENSE-CLOCK-1 .

ops clock-running clock-dead : -> Prop [ctor] .
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The labeling function, which assigns to each state the set of atomic propositions holding in that
state, is given in (Real-Time) Maude by defining for which states the property holds. The infix
operator |= is used to define the state patterns for which the proposition is true. It is not nec-
essary to define explicitly the states for which a property does not hold. That the proposition
clock-running should be true in all states of the form {clock(r)} can thus be stated as follows:

var R : Time .

eq {clock(R)} |= clock-running = true .

The property clock-running will not hold in states which are not of the form {clock(r)} (unless
more equations are added for clock-running). The proposition clock-dead is defined to hold for
all states of the form {stopped-clock(r)}:

eq {stopped-clock(R)} |= clock-dead = true .

The parameterized atomic proposition clock-is(r), which should hold, for each r , exactly when
the clock—be it running or stopped—shows the time r , can be defined as follows:

op clock-is : Time -> Prop [ctor] .

var R’ : Time .

eq {clock(R)} |= clock-is(R’) = (R == R’) .

eq {stopped-clock(R)} |= clock-is(R’) = (R == R’) .

A clocked proposition also takes the elapsed time into account. For example, the parameterized
proposition timeIs(r) which holds in all states with time stamp r can be defined as follows:

op timeIs : Time -> Prop [ctor] .

var SYSTEM : System .

eq {SYSTEM} in time R |= timeIs(R’) = (R == R’) .

Similar general propositions timeIsLessThan and timeIsGreaterThan can be defined as follows:

ops timeIsLessThan timeIsGreaterThan : Time -> Prop [ctor] .

eq {SYSTEM} in time R |= timeIsLessThan(R’) = (R lt R’) .

eq {SYSTEM} in time R |= timeIsGreaterThan(R’) = (R’ lt R) .

A clocked property may of course talk about both the state and the time stamp part of a time
stamped state. The following proposition says that the clock shows the same value as the current
time elapse and that the clock has not stopped:

op clockEqualsTimeElapse : -> Prop [ctor] .

eq {clock(R)} in time R’ |= clockEqualsTimeElapse = (R == R’) .
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Just as for search, Real-Time Maude provides timed and untimed model checking commands to
check whether each behavior from a given initial state satisfies a given temporal logic formula.
Clocked properties can only be checked using timed model checking.

Internally, Real-Time Maude implements time-bounded model checking by transforming the module
so that any timed rewrite sequence

t0 in time r0 −→ t1 in time r1 −→ · · · ti in time ri −→ ti+1 in time ri+1 −→ · · ·

where ri is within the time bound but ri+1 is beyond the time bound is replaced by a sequence

t0 in time r0 −→ · · · −→ ti in time ri −→ ti in time ri −→ · · · −→ ti in time ri −→ · · ·

Untimed model checking ignores the duration information just like untimed search.

The syntax of the timed model checking command is

(mc initState |=t formula with no time limit .)

or

(mc initState |=t formula in time ∼ timeLimit .)

where formula is a ground term of sort Formula and ∼ is either < or <=.

The syntax of untimed model checking is

(mc initState |=u formula .)

(Notice the use of |=t and |=u.)

(Untimed model checking will usually be used instead of timed model checking with no time limit.
One may want to use the unbounded timed model checking in the rare cases when the model
checking terminates because of the lazy construction of the automaton used in the model checking,
and where one is interested in the time stamps in a counterexample and/or in stating clocked
properties.)

The model checking commands return true when the property holds w.r.t. to the current tick
mode and return a counterexample otherwise. The counterexample consists of two sequences of
states where the first one represents a rewrite sequence leading to a loop, and the second part of
the counterexample represents the loop. The syntax of such counterexamples is exactly that of the
core Maude model checker (see [8]).
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3.8.1 Examples

Clocks

After defining the appropriate tick mode (e.g. by the command (set tick def 1 .)) we can
analyze our model of a dense clock given in the module DENSE-CLOCK-1. It makes more sense to
use untimed model checking to analyze the system, since the set of reachable states is finite with
the given tick mode.

The following command checks the invariant that the clock can never show 25 when starting in
state {clock(0)}:

Maude> (mc {clock(0)} |=u [] ~ clock-is(25) .)

Result Bool :

true

It should always be the case that the clock is either dead or running:

Maude> (mc {clock(0)} |=u [] (clock-running \/ clock-dead) .)

Result Bool :

true

Each possible behavior will reach a state where the clock shows 24 or is dead:

Maude> (mc {clock(0)} |=u <> (clock-is(24) \/ clock-dead) .)

Result Bool :

true

However, it is not always the case that one will reach a state where the clock shows 24:

Maude> (mc clock(0) |=u <> clock-is(24) .)

Result ModelCheckResult :

counterexample({{clock(0)} ,’tick}{{clock(1)} ,’tick}{{clock(2)} ,’tick}

...

{{clock(21)} ,’tick}{{clock(22)} ,’tick}{{clock(23)} ,’batteryDies},

{{stopped-clock(23)} ,’tickWhenFlat})

In this resulting counterexample, the clock ticks all the way till {clock(23)}, then the rule
batteryDies is applied, leading to the state {stopped-clock(23)}, from which it will self-loop
forever using the rule tickWhenFlat.

The clock will run either forever or until it dies:
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Maude> (mc {clock(0)} |=u (clock-running W clock-dead) .)

Result Bool :

true

Once the clock stops, it remains dead:

Maude> (mc {clock(0)} |=u (clock-dead => [] clock-dead) .)

Result Bool :

true

A property which involves the elapse of time says that the clock is running and shows the “correct”
time—in the sense that it shows the elapsed time in the system—until the clock dies or until time
24 has passed. Since this property is a clocked property it must be analyzed using timed model
checking, for example by checking whether it holds within time 100:

Maude> (mc {clock(0)} |=t clockEqualsTimeElapse U (timeIs(24) \/ clock-dead)

in time <= 100 .)

Result Bool :

true

(Since the property is a liveness property it also holds for all computations that are not bound by
the time limit.)

The following is also an example of a clocked property, and can therefore not be checked by untimed
model checking, but can be checked using timed model checking without imposing a time limit:

Maude> (mc {clock(0)} |=t <> ~ clockEqualsTimeElapse with no time limit .)

Result Bool :

true

Finally, we “show” that the clock value is always different from 3/2, which is an erroneous statement
about our dense time model, but which will pass the model checker because of the tick mode which
always increases the time value by 1:

Maude> (mc {clock(0)} |=u [] ~ clock-is(3/2) .)

Result Bool :

true
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Round trip times.

Let us now consider our round trip time specifications. Even the simplest of these specifications
contains a clock attribute in the state, so the reachable state space is infinite. (In addition, the
time stamps in the messages and possibly the rtt attribute values can grow beyond any bound.)
They can therefore not be model checked using untimed model checking. It is also worth noticing
that the time domain in such protocols usually is discrete, so the properties which the model checker
says are true actually hold in the system.

Real-Time Maude seems particularly well-suited for modeling and analyzing complex communica-
tion protocols, since they are complicated enough to warrant simulation/testing and model checking
analysis before correctness proofs are undertaken (by tools such as STeP [39]), while at the same
time they usually cannot be modeled by finite-control automata. Indeed, Real-Time Maude has
been used to model and analyze a suite of sophisticated communication protocols [28].

We analyze the round trip time specification given in the module MANY-RTTS, where the transmission
of messages takes an “arbitrary” amount of time greater than or equal to MIN-DELAY, and where
timers ensure that a new rtt session is started every MAX-RTT time units until an rtt value less than
MAX-RTT is found. Note that there may be any number of nodes in the initial state. The following
properties may possibly be the most interesting:

• Each computed rtt value between any pair of nodes is greater than or equal to 2 * MIN-DELAY

and less than MAX-RTT.

• For any ordered pair of nodes whose rtt value we want to compute, either the rtt is found, or
a message session is active to find such a value. That is, after the findRtt message has been
treated, either the rtt value between the given pair of nodes is found, or there is a current
message exchange going on, so that either an rtt? or an rttAck message with a “current”
time stamp between the objects is present in the configuration.

• There will never be superfluous messages sent. That is, there is no current message present
in the system between a pair of nodes for which an rtt value is already found. There may of
course be old messages (with a time stamp of less than or equal to the current time minus
MAX-RTT) present, which represent messages which have still not been delivered.

• Stability of the rtt value. The rtt value between a pair of nodes should not change once it is
found.

The atomic propositions needed to express these properties should be given in a module importing
both TIMED-MODEL-CHECKER and MANY-RTTS:

(tomod MODEL-CHECK-MANY-RTTS is

including TIMED-MODEL-CHECKER .

protecting MANY-RTTS .

For the first property, we define the proposition badRttValue which is true if there exists a too
large or too small rtt value in any object’s rttValues attribute:
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op badRttValue : -> Prop [ctor] .

var REST : Configuration .

vars O O’ : Oid .

vars R R’ R’’ : Time .

var RTT-VALS : RttValues .

ceq {REST < O : Node | rttValues : rttValue(O’, R) ; RTT-VALS >}

|=

badRttValue = true if R >= MAX-RTT or R < 2 * MIN-DELAY .

For the second property we define the propositions rttFound and currentMsgExchange which are
both parameterized by the “initiator” and “responder” nodes of an rtt session. rttFound(O,O’) is
true if node O has stored an rtt value for neighbor O’:

ops rttFound currentMsgExchange : Oid Oid -> Prop [ctor] .

eq {REST < O : Node | rttValues : rttValue(O’, R) ; RTT-VALS >}

|=

rttFound(O, O’) = true .

The property currentMsgExchange(O, O’) holds if there is a message session between O and O’

in which O is the initiator, and whose time stamp is recent, i.e., less than time MAX-RTT behind the
current time. This property is therefore a clocked property5:

ceq {REST rtt?(O’, O, R)} in time R’

|=

currentMsgExchange(O, O’) = true if R + MAX-RTT > R’ .

ceq {REST rttAck(O, O’, R)} in time R’

|=

currentMsgExchange(O, O’) = true if R + MAX-RTT > R’ .

We also need to make sure that the search for an rtt value has started, i.e., that the initiator
has read its findRtt message. The following property findMsgExists(O) holds if there is still a
findRtt(O) message in the system:

op findMsgExists : Oid -> Prop [ctor] .

eq {REST findRtt(O)}

|=

findMsgExists(O) = true .

5An alternative version could relate the time stamp to the value of the initiator’s clock attribute instead of to
the current elapsed time.
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For our third property of interest, we define the proposition superfluousMsg which is true if there
is any superfluous message, i.e., a “current” message between an ordered pair of nodes whose rtt
value has already been determined, in the system:

op superfluousMsg : -> Prop [ctor] .

ceq {< O : Node | rttValues : rttValue(O’, R) ; RTT-VALS >

rtt?(O’, O, R’)

REST} in time R’’

|=

superfluousMsg = true if R’ + MAX-RTT > R’’ .

ceq {< O : Node | rttValues : rttValue(O’, R) ; RTT-VALS >

rttAck(O, O’, R’)

REST} in time R’’

|=

superfluousMsg = true if R’ + MAX-RTT > R’’ .

For the final property stated above, we define the parameterized proposition rttValueIs(O, O’, R)

which holds if the rttValues attribute of object O has an entry rttValue(O’, R) and no other
entries for O’:

op rttValueIs : Oid Oid Time -> Prop [ctor] .

ceq {REST < O : Node | rttValues : rttValue(O’, R) ; RTT-VALS >}

|=

rttValueIs(O,O’, R) = true if not O’ in RTT-VALS .

op _in_ : Oid RttValues -> Bool .

eq O in noValue = false .

eq O in rttValue(O’, R) ; RTT-VALS = (O == O’) or O in RTT-VALS .

We are now ready to analyze the specification w.r.t. the above temporal properties. We restrict
to check the properties within time 9 because of the high degree of nondeterminism which results
in a large number of reachable states. We set MAX-RTT to 4. The following module includes the
module in which the initial state initState was defined as well as the module which defined the
propositions above:

(tomod MODEL-CHECK-TEST-MANY-RTTS is

protecting TEST-MANY-RTTS .

including MODEL-CHECK-MANY-RTTS .

endtom)

First of all, we show that no values smaller than 2 * MIN-DELAY or greater than or equal to MAX-RTT

can be stored in an object’s rttValues attribute by showing that it is invariant, within time 9,
that ~ badRttValue, that is, not badRttValue holds:

56



Maude> (mc initState |=t [] ~ badRttValue in time <= 9 .)

Result Bool :

true

The second property of interest is that if we want to find the rtt value between two pairs of nodes,
then either such a value is found, or it is still being worked on. For example, in the initial state
initState, the node n4 is interested in finding the rtt value of each of its neighbors, such as n3.
Then it should always be the case that if the findRtt(n4) message has been consumed by n4, it
follows that either the node n4 has a value for n3 in its rttValues attribute, or a current message
exchange for finding the rtt value is in the state. That is, in each state it should be the case that
if the message findRtt(n4) is not in the configuration (~ findMsgExists(n4)), then in all the
following states either a rtt value is found for n3 in the node n4 (rttFound(n4, n3)) or there is
a current rtt? or rttAck message traveling between n4 and n3 (currentMsgExchange(n4, n3)).
The desired property can thus be checked as follows:

Maude> (mc initState |=t

> (~ findMsgExists(n4)) =>

> [] (rttFound(n4,n3) \/ currentMsgExchange(n4, n3))

> in time <= 9 .)

Result ModelCheckResult :

counterexample( ... )

From the counterexample it was easy to see why the property fails: There is a state where the
resend timer expires when the messages are too old, but where the new rtt? message is not sent.
We could have modified the property to also take this case into account.

The next property checks whether it is invariant within time 9 that there is no superfluous message
in the system:

Maude> (mc initState |=t [] ~ superfluousMsg in time <= 9 .)

Result Bool :

true

The final property we check is the stability of the rtt value. Once an rtt value is found, it should
always be the unique rtt value for a pair of nodes. The following property states that, within time
9, it is always the case that if in any state, node n4’s recorded rtt value to node n3 is 2, then it will
stay so forever:

Maude> (mc initState |=t rttValueIs(n4, n3, 2) => [] rttValueIs(n4, n3, 2)

> in time <= 9 .)

Result Bool :

true
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3.9 Three Built-in Model Checking Commands

Real-Time Maude’s temporal logic model checking command can be employed when the reachable
state space is finite, or when we make it finite by restricting to behaviors within a certain time
bound. However, some useful temporal logic properties can also be established when the reachable
state space is infinite by using a breadth-first strategy to analyze each possible behavior from the
initial state.

Based on our analysis effort of the AER/NCA protocol suite, we have identified some useful classes
of temporal formulas for which Real-Time Maude provides a semi-decision procedure for discrete
time systems using breadth-first search. These properties are:

• Liveness properties of the form <> pattern such that cond , where pattern is a search pattern
or a clocked search pattern. This property holds if a state matching the pattern can be reached
in each possible behavior from the initial state (with the chosen strategy for advancing time).

• “Until” properties of the form (pattern1 such that cond1) until (pattern2 such that cond2),
where pattern1 and pattern2 are (possibly clocked) search patterns. Such a property holds if
in each behavior from the initial state:

– a state matching pattern2 and satisfying cond2 will be reached; and

– each state in the computation matches pattern1 and satisfies cond1, until the first state
matching pattern2 and satisfying cond2 is encountered.

• “Until-stable” properties of the form (pattern1 such that cond1) untilStable (pattern2 such

that cond2). Such a property holds if (pattern1 such that cond1) until (pattern2 such that

cond2) holds, and pattern2 such that cond2 is stable in the sense that once it holds in a be-
havior, it will continue to hold in all subsequent states. This command is useful for protocols
and other distributed systems, when we want to make sure that some desired properties are
reached and that further computations don’t destroy these values.

It is worth mentioning that, since the atomic propositions are just patterns with conditions, these
commands can be used to analyze a specification before introducing and defining temporal logic
propositions. Note also that, for flat object systems, the objects in the patterns are expanded as
explained for Real-Time Maude search commands (see Section 3.6.4).

The syntax of these commands is

(check [in mod :] initState |= <> pattern [such that cond ] with no time limit .)

(check [in mod :] initState |= <> pattern [such that cond ] in time ∼ timeLimit .)

(check [in mod :] initState |= pattern1 [such that cond1] until pattern2 [such that cond2]
with no time limit .)

(check [in mod :] initState |= pattern1 [such that cond1] until pattern2 [such that cond2]
in time ∼ timeLimit .)

(check [in mod :] initState |= pattern1 [such that cond1] untilStable

pattern2 [such that cond2]
with no time limit .)
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(check [in mod :] initState |= pattern1 [such that cond1] untilStable

pattern2 [such that cond2]
in time ∼ timeLimit .)

where initState is a ground term of sort GlobalSystem; pattern, pattern1, and pattern2 are ground
irreducible terms of either sort GlobalSystem or ClockedSystem; ∼ is either < or <=; and timeLimit
is a ground term of sort Time. The such that conditions are optional.

Unlike most Real-Time Maude commands, these commands are not implemented by some theory
transformation followed by a call to an efficient built-in Maude function. They are instead im-
plemented “explicitly” in Maude using a breadth-first search strategy. While this certainly affects
performance, these commands have proved sufficiently efficient to be useful for analyzing the large
AER/NCA specification. The implementation does not cache states to avoid analyzing states which
have already been visited. Therefore, it does not matter whether the reachable state space is finite,
and there is no need to have untimed versions of these commands.

3.9.1 Examples

Our analysis of the AER/NCA protocol suite illustrates the usefulness of the check command in a
real example. In this section we briefly illustrate the command on the very simple DISCRETE-CLOCK-24
example where the clock never stops.

The following command checks whether the clock will reach the state {clock(12)} in each possible
behavior from {clock(0)}:

Maude> (check {clock(0)} |= <> {clock(12)} with no time limit .)

Result: the property holds.

The following property shows that the clock shows the “real” time (i.e., the total time elapsed so
far) until it shows 24:

Maude> (check {clock(0)} |= {clock(R:Time)} in time R:Time until {clock(24)}

> with no time limit .)

Result: The property holds.

The following command checks whether the clock shows the real time until it shows 30:

Maude> (check {clock(0)} |= {clock(R:Time)} in time R:Time until {clock(30)}

> with no time limit .)

Result: the property does not hold. Counterexample:

{clock(0)} in time 24
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The counterexample shows the first state invalidating the property: the state {clock(0)} can be
reached in time 24.

It should not be the case that the clock value remains 24 after that value is reached:

Maude> (check {clock(0)} |= {S:System} untilStable {clock(24)}

> with no time limit .)

Result: the property does not hold. Counterexample:

{clock(0)} in time 24

Timed temporal logic model checking of (formulas equivalent to) the last three of the above prop-
erties failed to terminate. The first and the last properties above could of course be checked using
untimed model checking, since the reachable state space is finite when timestamps are not used.
The comparison between the model checking and the check command still holds, because we could
make the clock system into an infinite-state system by just adding a “clock” component which
showed the elapsed time, so that e.g. {clock(11, 35)} would represent the state reached in time
35. Untimed temporal logic model checking would then fail in the three examples above, while the
check command would still terminate.
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[26] P. C. Ölveczky and M. Grimeland. Formal analysis of time-dependent cryptographic protocols
in Real-Time Maude. In 21st International Parallel and Distributed Processing Symposium
(IPDPS 2007). IEEE Computer Society Press, 2007.
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Appendix A

Predefined Modules

Real-Time Maude provides predefined modules for defining the time domain to be, e.g., the natural
numbers or the nonnegative rational numbers. Other predefined modules extend either of these
time domains with an infinity value INF.

This section also presents the predefined modules TIMED-PRELUDE, which is automatically imported
by any timed module, the module TIMED-OO-PRELUDE, which is automatically imported by any
object-oriented timed module, and the module TIMED-MODEL-CHECKER, which is used for linear
temporal logic model checking.

A.1 The Modules TIME and TIMED-PRELUDE

The following module TIME defines the basic parts of a time domain, such as the sorts Time and
NzTime (for “non-zero” time values), the constant zero, and the operators _plus_, _monus_, _lt_
(“less than”), _le_ (“less than or equal”), _gt_ (“greater than”), and _ge_ (“greater than or
equal”). Notice that the functions _le_, _gt_, and _ge_ are defined in terms of _lt_, so that only
the function _lt_ needs to be defined when defining the concrete time domain.

fmod TIME is

sorts Time NzTime .

subsort NzTime < Time .

op zero : -> Time .

op _plus_ : Time Time -> Time [assoc comm prec 33 gather (E e)] .

op _monus_ : Time Time -> Time [prec 33 gather (E e)] .

op _le_ : Time Time -> Bool [prec 37] .

op _lt_ : Time Time -> Bool [prec 37] .

op _ge_ : Time Time -> Bool [prec 37] .

op _gt_ : Time Time -> Bool [prec 37] .

eq zero plus R:Time = R:Time .

eq R:Time le R’:Time = (R:Time lt R’:Time) or (R:Time == R’:Time) .

eq R:Time ge R’:Time = R’:Time le R:Time .
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eq R:Time gt R’:Time = R’:Time lt R:Time .

endfm

The following module TIMED-PRELUDE is imported by any timed module and specifies how a timed
Real-Time Maude module is transformed into an ordinary Maude module by what essentially
amounts to the identity transformation.

fmod TIMED-PRELUDE is

including TIME .

sorts System GlobalSystem ClockedSystem .

subsort GlobalSystem < ClockedSystem .

op {_} : System -> GlobalSystem [format (g o g so)] .

op _in time_ : GlobalSystem Time -> ClockedSystem [format (o g g y o)] .

eq (CLS:ClockedSystem in time R:Time) in time R’:Time =

CLS:ClockedSystem in time (R:Time plus R’:Time) .

endfm

A.2 Predefined Time Domains

The following module extends the abstract specification TIME with a supersort TimeInf which
extends the time domain Time with an infinity value INF, and extends the functions on the time
domain accordingly:

fmod TIME-INF is

including TIME .

sort TimeInf .

subsort Time < TimeInf .

op INF : -> TimeInf .

op _plus_ : TimeInf TimeInf -> TimeInf [ditto] .

op _monus_ : TimeInf Time -> TimeInf [ditto] .

op _le_ : TimeInf TimeInf -> Bool [prec 37] .

op _lt_ : TimeInf TimeInf -> Bool [prec 37] .

op _ge_ : TimeInf TimeInf -> Bool [prec 37] .

op _gt_ : TimeInf TimeInf -> Bool [prec 37] .

var TI TI’ : TimeInf .

var R : Time .

eq INF plus TI = INF .

eq INF monus R = INF .

eq TI le INF = true .

eq INF le R = false .

eq INF lt TI = false .

eq R lt INF = true .

eq TI gt TI’ = TI’ lt TI .
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eq TI ge TI’ = TI’ le TI .

endfm

When the time is assumed to be linear, the functions minimum and maximum can be defined on the
time domain:

fmod LTIME is

including TIME .

ops minimum maximum : Time Time -> Time [assoc comm] .

vars R R’ : Time .

ceq maximum(R, R’) = R if R’ le R .

ceq minimum(R, R’) = R’ if R’ le R .

endfm

--- Linear time with infinity value:

fmod LTIME-INF is

including LTIME .

including TIME-INF .

ops minimum maximum : TimeInf TimeInf -> TimeInf [ditto] .

eq maximum(INF, TI:TimeInf) = INF .

eq minimum(INF, TI:TimeInf) = TI:TimeInf .

endfm

The following module uses Maude’s efficient built-in module NAT to define the time domain to be
the natural numbers by adding the subsort declarations

subsort Nat < Time .

subsort NzNat < NzTime .

and by defining the Time functions:

fmod NAT-TIME-DOMAIN is

including LTIME .

protecting NAT .

subsort Nat < Time .

subsort NzNat < NzTime .

vars N N’ : Nat .

eq zero = 0 .

eq N plus N’ = N + N’ .

eq N monus N’ = if N > N’ then sd(N, N’) else 0 fi .

eq N lt N’ = N < N’ .

endfm
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The following module adds the value INF to the natural number time domain, and extends the
comparison operators _>_, _>=_, _<_, and _<=_, and the functions _+_, max, and min to the infinity
value INF:

fmod NAT-TIME-DOMAIN-WITH-INF is

protecting NAT-TIME-DOMAIN .

including LTIME-INF .

--- should for simplicity extend <, >=, etc to infinity:

op _<_ : TimeInf TimeInf -> Bool [ditto] .

op _<=_ : TimeInf TimeInf -> Bool [ditto] .

op _>_ : TimeInf TimeInf -> Bool [ditto] .

op _>=_ : TimeInf TimeInf -> Bool [ditto] .

op _+_ : TimeInf TimeInf -> TimeInf [ditto] .

var N : Nat . var TI : TimeInf .

eq INF < TI = false .

eq N < INF = true .

eq TI <= INF = true .

eq INF <= N = false .

eq INF >= TI = true .

eq N >= INF = false .

eq TI > INF = false .

eq INF > N = true .

eq INF + TI = INF .

--- NEW: must also extend the built-in ’min’ and’max’ to TimeInf:

ops min max : TimeInf TimeInf -> TimeInf [ditto] .

eq max(INF, TI:TimeInf) = INF .

eq min(INF, TI:TimeInf) = TI:TimeInf .

endfm

For dense time domains one can use the nonnegative rational numbers. The following module
defines the sorts NNegRat for the nonnegative rational numbers by extending Maude’s built-in
module RAT which is an efficient implementation of the rational numbers:

fmod POSITIVE-RAT is

protecting RAT .

sort NNegRat .

subsorts Zero PosRat Nat < NNegRat < Rat .

endfm

The following module defines the time domain to be the nonnegative rationals:

fmod POSRAT-TIME-DOMAIN is
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including LTIME .

protecting POSITIVE-RAT .

subsort NNegRat < Time .

subsort PosRat < NzTime .

vars R R’ : NNegRat .

eq zero = 0 .

eq R plus R’ = R + R’ .

eq R monus R’ = if R > R’ then R - R’ else 0 fi .

eq R lt R’ = R < R’ .

endfm

The following module adds the infinity value and the sort TimeInf:

fmod POSRAT-TIME-DOMAIN-WITH-INF is

protecting POSRAT-TIME-DOMAIN .

including LTIME-INF .

--- again, we should extend the comparison operators to infinity:

op _<_ : TimeInf TimeInf -> Bool [ditto] .

op _<=_ : TimeInf TimeInf -> Bool [ditto] .

op _>_ : TimeInf TimeInf -> Bool [ditto] .

op _>=_ : TimeInf TimeInf -> Bool [ditto] .

op _+_ : TimeInf TimeInf -> TimeInf [ditto] .

op _+_ : NNegRat NNegRat -> NNegRat [ditto] .

var R : NNegRat . var TI : TimeInf .

eq INF < TI = false .

eq R < INF = true .

eq TI <= INF = true .

eq INF <= R = false .

eq INF >= TI = true .

eq R >= INF = false .

eq TI > INF = false .

eq INF > R = true .

eq INF + TI = INF .

--- NEW: must also extend the built-in ’min’ and’max’ to TimeInf:

ops min max : TimeInf TimeInf -> TimeInf [ditto] .

eq max(INF, TI:TimeInf) = INF .

eq min(INF, TI:TimeInf) = TI:TimeInf .

--- Some additional declarations for preregularity:

ops min max : NNegRat NNegRat -> NNegRat [ditto] .

ops min max : Zero Zero -> Zero [ditto] .

op min : Zero NzNat -> Zero [ditto] .
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op max : Zero NzNat -> NzNat [ditto] .

op max : Rat TimeInf -> TimeInf [ditto] .

op max : Rat NNegRat -> NNegRat [ditto] .

endfm

A.3 The Module TIMED-OO-PRELUDE

The following predefined module is automatically imported by any object-oriented timed module.
The subsort declaration

subsort Configuration < System .

states that the sort Configuration is the sort of the system state. The other sorts declared in
this module declare subsorts of the sort Configuration which may be useful in defining rules and
equations that observe whole specifications, such as tick rules and the functions mte and delta:

mod TIMED-OO-PRELUDE is

including CONFIGURATION .

including TIMED-PRELUDE .

sorts EmptyConfiguration NEConfiguration MsgConfiguration

NEMsgConfiguration ObjectConfiguration NEObjectConfiguration .

subsorts EmptyConfiguration < MsgConfiguration ObjectConfiguration

< Configuration .

subsorts Msg < NEMsgConfiguration < MsgConfiguration NEConfiguration .

subsorts Object < NEObjectConfiguration <

ObjectConfiguration NEConfiguration .

subsort NEConfiguration < Configuration .

subsort Configuration < System .

--- op none : -> EmptyConfiguration . --- crashes w/ none for Configuration

op __ : EmptyConfiguration EmptyConfiguration -> EmptyConfiguration [ditto] .

op __ : NEConfiguration NEConfiguration -> NEConfiguration [ditto] .

op __ : MsgConfiguration MsgConfiguration -> MsgConfiguration [ditto] .

op __ : NEMsgConfiguration NEMsgConfiguration -> NEMsgConfiguration [ditto] .

op __ : ObjectConfiguration ObjectConfiguration ->

ObjectConfiguration [ditto] .

op __ : NEObjectConfiguration NEObjectConfiguration ->

NEObjectConfiguration [ditto] .

endm

A.4 The Module TIMED-MODEL-CHECKER

The following module can be used when model checking timed modules. It extends Maude’s built-in
MODEL-CHECKER module with a subsort declaration
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subsort ClockedSystem < State .

which declares that the global state for model checking purposes is ClockedSystem:

fmod TIMED-MODEL-CHECKER is

including TIMED-PRELUDE .

including MODEL-CHECKER .

subsort ClockedSystem < State .

endfm
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Appendix B

Real-Time Maude Commands and

Modules

Real-Time Maude extends Full Maude [8] and Maude. The Maude manual [8] describes all Maude
and Full Maude commands and module syntax in detail. Chapters 17 and 18 of that manual
summarize all commands and module syntax.

Not all Maude commands are useful in Real-Time Maude, since they concern the execution of the
Real-Time Maude interpreter in Maude rather than the execution of the user-defined timed module
in Real-Time Maude. We list below the Maude system commands which are useful in Real-Time
Maude, followed by a list of Full Maude commands which can be used in Real-Time Maude. Finally,
we summarize the Real-Time Maude commands and the syntax of timed modules.

Real-Time Maude commands and modules should be enclosed by a pair of parentheses. Maude
system commands should not be enclosed in parentheses. For example, a file clock.rtmaude which
includes both Maude system commands and input to Real-Time Maude may be given as follows:

load real-time-maude.maude

(tmod DISCRETE-CLOCK-1 is

protecting NAT-TIME-DOMAIN .

op clock : Time -> System [ctor] .

var N : Time .

rl [tick] : {clock(N)} => {clock(N + 1)} in time 1 .

endtm)

--- Simulate one behavior up to time 100:

(trew clock(0) in time <= 100 .)

eof

--- nothing below this point will be read by Maude because of the ’eof’ above

(utsearch clock(0) =>* clock(25) .)
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The UNIX command maude clock.rtmaudewill start Maude and read this file. The Maude system
command load real-time-maude.maude will then read the file real-time-maude.maude which
starts Real-Time Maude. The module DISCRETE-CLOCK-1 is entered into Real-Time Maude, and
the timed rewrite command will be executed by Real-Time Maude. The Maude system command
eof signals “end-of-file” so that the remainder of the file will not be read, and the search command
is therefore not executed.

Notation: Optional parts of commands will be enclosed by [square brackets].

B.1 Useful Maude System Commands

The following Maude system commands are useful in Real-Time Maude (note that they don’t end
with a period):

in filename

includes the file with the given name at this point.

load filename

is the same as in but does not produce detailed output as modules are entered.

eof

tells Maude to ignore the rest of the file.

q

(or quit) exits Maude (and Real-Time Maude).

pwd

prints the current working directory.

ls [params]

lists the files in the current or the specified directory.

cd [directory ]

changes the working directory.

Most of the other Maude commands, except the tracing commands, are not very useful when using
the Real-Time Maude interpreter.
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B.1.1 Tracing

The tracing facilities of Maude allow us to follow the sequence of rewrite steps taking place in a
rewrite execution of our Real-Time Maude specification. Tracing is turned on with the Maude
command

set trace on .

and is turned off with the command

set trace off .

To avoid too much output, it is recommended that the set trace on . command is followed by
the commands

trace exclude REAL-TIME-MAUDE .

set trace substitution off .

set trace eq off .

when tracing a Real-Time Maude execution.

B.2 Useful Full Maude Commands

The following Full Maude commands are useful when analyzing Real-Time Maude specifications.
They are enclosed within parentheses and end with a period (‘.’). See the Maude manual for a
more thorough description of these commands:

(red [in mod :] t .)

uses the equations and membership axioms in the given module (or the current module if none is
given) to “reduce” (or “simplify”) the given term t as much as possible.

(select module .)

selects the module named mod to be the current module.

(show module [mod ] .)

prints a representation of the module mod (or the current module if none is given).

(show all [mod ] .)

prints a flattened representation of the given/current module.
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(show sorts [mod ] .)

prints sort and subsort information about the given/current module. The keyword sorts can be
replaced by ops, vars, mbs, eqns, and rls to print information about the operators, the variables,
the membership axioms, the equations, and the rules of the given/current module.

(show modules .)

lists all modules, except some predefined, currently in the Real-Time Maude database.

(match [[n]] [in mod :] pattern <=? term .)

lists (at most n) matches between pattern and the term. The command xmatch performs matching
with extension. The matching commands seem not to work in the current version of Full Maude.

Full Maude’s (fair) rewrite and search commands can also be used in Real-Time Maude although
they are superseded by Real-Time Maude’s timed (and untimed !) rewrite and search commands
which also take into account the time advance strategy and have other salient features.

B.3 Real-Time Maude Modules and Theories

Real-Time Maude supports the specification of Full Maude functional, system, and object-oriented
theories and modules, which are all documented in the Maude manual. In addition, Real-Time
Maude supports the specification of timed systems and object-oriented theories and modules.

Timed system modules and timed system theories—which define the interface of a parameterized
module, i.e., the structure and properties required of an actual parameter of a parameterized
module—are specified with syntax

(tmod modName is declarations endtm)

and

(tth theoryName is declarations endtth)

respectively. The module and theory names may include formal parameters. Timed modules and
theories automatically import the module TIMED-PRELUDE. The declarations part consists of a set of
declarations of module importations, sorts and subsorts, operators, variables, membership axioms,
equations, and rewrite rules. Such declarations are also described in the Maude manual. We give
below some restrictions on the declarations allowed in timed modules and theories.

Object-oriented timed modules and theories are declared with syntax

(tomod modName is declarations endtom)
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and

(toth theoryName is declarations endtoth)

Timed object-oriented modules and theories automatically import the module TIMED-OO-PRELUDE.

B.3.1 Restrictions in Timed Modules

User-defined timed modules and theories must satisfy the following criteria, in addition to the
criteria imposed on Full Maude modules and theories:

• The time domain should be functional: if t −→ t ′ holds for t , t ′ terms of sort Time, then t
and t ′ must be equivalent according to the equations in the module.

• No left-hand side of a rule should be a term with least sort ClockedSystem.

• The sorts GlobalSystem and ClockedSystem should have no supersorts or subsorts (except
for those defined in TIMED-PRELUDE), there should be no equations involving terms of these
sorts, and no operator should have any of these sorts in its arity or as its codomain, with the
exceptions given below.

• We allow the definition of new operators of sort GlobalSystem to provide a convenient way
of defining initial states. Any term built by such additional operators of sort GlobalSystem
should reduce by equations to a term of the form {t}. No rewrite rule should contain any
such new operators of sort GlobalSystem.

B.3.2 Tick Rules

Rules where the left-hand side has sort GlobalSystem and the right-hand side has least sort
ClockedSystem are called tick rules. While there are no other restrictions on such rules than
those mentioned above, Real-Time Maude is designed to handle the following kinds of tick rules
(which are the only kinds of tick rules we have needed in our Real-Time Maude applications):

• Deterministic tick rules, that have the form

rl [l] : {t} => {t ′} in time t ′′ .

and

crl [l] : {t} => {t ′} in time t ′′ if cond .

where each variable in t ′′ occurs in t or is initialized in the condition cond .

• Nondeterministic tick rules with given maximal time elapse, that have the form

crl [l] : {t} => {t ′} in time X if [cond/\] X le t ′′ [/\ cond ′] [nonexec] .
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or

crl [l] : {t} => {t ′} in time X if [cond/\] X <= t ′′ [/\ cond ′] [nonexec] .

where X is a variable of (possibly a subsort of) sort Time which does not occur in t and
which is not initialized in cond/\cond ′, and where each variable in t ′′ either occurs in t or is
initialized in cond . Neither cond nor cond ′ should contain a conjunct of the form X le t ′′′,
X <= t ′′′, X lt t ′′′, or X < t ′′′. The second form of this kind of rule should only be used
when r le r ′ equals r <= r ′ for all terms r , r ′ of sort Time.

• Nondeterministic tick rules with open-ended bounded time increase, which are of the above
form with le and <= replaced by lt and <.

• Nondeterministic tick rules with unbounded time increase, that have the form

rl [l] : {t} => {t ′} in time X [nonexec] .

or

crl [l] : {t} => {t ′} in time X if cond [nonexec] .

where X is a variable of sort Time which does not occur in t or cond .

B.4 Real-Time Maude Commands

This section lists the Real-Time Maude-specific commands which can be used in addition to the
Maude and Full Maude commands listed earlier.

B.4.1 Help Manual

The command

(help .)

prints a list of help commands for further information.

(help subject .)

explains the commands concerning subject , which may either of the words rewrite, trew, tfrew,
search, tsearch, utsearch, check, diamond, until, until-stable, find, earliest, latest, mc,
model-check, tick-mode, set, and get.

(man subject .)

is the same as (help subject .).

(show timed modules .)

lists the names of the timed modules introduced in the current Real-Time Maude session.
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B.4.2 Time Sampling Strategies

The command

(set tick def timeIncrement .)

defines the time sampling strategy (also called tick mode), which is used for handling tick rules
with nondeterministic duration, to the default strategy with time increment value timeIncrement .
Each application of an time-nondeterministic tick rule having either of the forms described in
Section B.3.2 will advance time by time timeIncrement if possible. The only exception are rules
with a given maximal possible duration m, in which case the time is advanced by the minimum of
timeIncrement and m.

The scope of each time sampling strategy declaration is until the next redeclaration of the time
sampling strategy, regardless of whether new modules—possibly with different time domains—are
introduced in the meantime. timeIncrement must be a ground term of sort NzTime each time a
module with nondeterministic tick rules is executed.

The command

(set tick max .)

sets the time sampling strategy to maximal mode. Time-nondeterministic tick rules with given
maximal duration(s) are executed by advancing time as much as possible (for each match!). Tick
rules in which such a maximal value cannot be determined cannot be executed under such a strategy,
neither can tick rules with maximal duration INF.

The command

(set tick max def defaultIncrement .)

sets the time sampling strategy to maximal with default mode. If a maximal duration (relative to
each match) can be determined, then time is advanced by that amount, otherwise time is attempted
advanced by defaultIncrement .

The command

(set tick det .)

sets the time sampling strategy to deterministic mode, which assumes that all tick rules have a
deterministically given duration. Tick rules with nondeterministically given durations will not be
executed. This is the default time sampling strategy.

The command

(show tick mode .)

shows the current time sampling strategy.
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B.4.3 Timed Rewrite Commands

The command

(trew [[n]] [in module :] term with no time limit .)

performs rewrite steps in a rule-fair top-most way starting from state t until no rules can be applied
(or until n rewrite steps have been performed if such a parameter is given). Tick rules are applied
according to the current time sampling strategy.

The command

(trew [[n]] [in module :] term in time ∼ timeLimit .)

for ∼ either <= or < and timeLimit a ground term of sort Time, does the same thing, except that
the rewriting is stopped when (or just before) the given time limit has been reached. The variations

(tfrew [[n]] [in module :] term with no time limit .)

and

(trew [[n]] [in module :] term in time ∼ timeLimit .)

do essentially the same thing but apply the rewrite rules in a “rule and position-fair” way.

B.4.4 Search Commands

The syntax for timed search is given as

(tsearch [[n]] [in module :] term arrow pattern [such that cond ]
with no time limit .)

and

(tsearch [[n]] [in module :] term arrow pattern [such that cond ]
in time ∼ timeLimit .)

and

(tsearch [[n]] [in module :] term arrow pattern [such that cond ]
in time-interval between ∼ timeLimit and ∼′ timeLimit ′ .)
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where arrow is either =>1, =>*, =>+, or =>!, pattern is a term of sort GlobalSystem or sort
ClockedSystem which is ground irreducible, cond is a semantic condition on the variables occuring
in pattern, each of ∼ and ∼′ is either <, <=, >, or >=, and timeLimit and timeLimit ′ are ground
terms of sort Time. The command searches for at most n (or an unbounded number if n is not
given) terms reachable from term that match pattern, so that the match satisfies cond , are reached
within the given time interval, and are reached in one step (if arrow is =>1), in zero or more steps
(if arrow is =>*), in one or more steps (if arrow is =>+), or which cannot be further rewritten (if
the arrow is =>!). The current time sampling strategy is taken into account when applying the tick
rules.

Note: All the variables occurring in cond , in the search commands as well as in the commands
described later, must be given in the form ‘VARNAME:SORT’ (in both cond and pattern). Furthermore,
‘such that’ can also be written as ‘s.t.’.

The untimed search command has syntax

(utsearch [[n]] [in module :] term arrow pattern [such that cond ] .)

and ignores the clocks during the search. The pattern must therefore have sort GlobalSystem. The
current time sampling strategy is taken into account when applying the tick rules.

The command

(find earliest term =>* pattern [such that cond ] .)

finds the state matching pattern, so that the match satisfies cond , which is reachable from term in
the shortest possible time, i.e., there is no pattern-state which can be reached in shorter time.

B.4.5 Temporal logic model checking

Time-bounded linear temporal logic model checking has the syntax

(mc term |=t formula with no time limit .)

and

(mc term |=t formula in time ∼ timeLimit .)

where ∼ is either < or <=, formula is a ground term of sort Formula in an extension of the module
TIMED-MODEL-CHECKER, term is a ground term of sort GlobalSystem, and timeLimit is a ground
term of sort Time. The model checking takes the current time sampling strategy into account when
applying the tick rules. The model checking is performed in the “clocked” translation of a timed
module. The formula may therefore contain clocked propositions.

The untimed model checking command has syntax

(utsearch term |=u formula .)

and analyzes the “unclocked” translation of the timed module, so that formula should not contain
any “clocked” proposition.
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B.4.6 Other Temporal Model Checking Commands

The tool also contains some commands for checking some properties about all the possible behaviors
from the initial state, relative to the use of the current time sampling strategy for applying the tick
rules. These commands are implemented using a breadth-first search strategy.

The commands

(find latest term =>* pattern [such that cond ] with no time limit .)

(find latest term =>* pattern [such that cond ] in time ∼ timeLimit .)

where ∼ is either < or <=, pattern is a ground irreducible term of sort GlobalSystem, and cond is
a semantic condition on the variables occurring in pattern, find the behavior in which it takes the
longest time to reach a desired state for the first time, or determines that there is a behavior in
which the desired state cannot be found.

The commands

(check term |= <> pattern [such that cond ] with no time limit .)

and

(check term |= <> pattern [such that cond ] in time ∼ timeLimit .)

where ∼, pattern, and cond are as above, are similar to the find latest commands in that they
check whether a pattern-state is reached in each behavior from term. The difference lies in the
presentation of the result.

The commands

(check term |= pattern1 [such that cond1] until pattern2 [such that cond2]
with no time limit .)

and

(check term |= pattern1 [such that cond1] until pattern2 [such that cond2]
in time ∼ timeLimit .)

where ∼ is either < or <=, checks whether the “property” (pattern1 such that cond1) until

(pattern2 such that cond2) holds in each behavior from state term. Likewise, the commands

(check term |= pattern1 [such that cond1] untilStable pattern2 [such that cond2]
with no time limit .)

and

(check term |= pattern1 [such that cond1] untilStable pattern2 [such that cond2]
in time ∼ timeLimit .)

where ∼ is either < or <=, checks whether the given “until-stable” properties hold.
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